Metamath Proof Explorer


Theorem reloggim

Description: The natural logarithm is a group isomorphism from the group of positive reals under multiplication to the group of reals under addition. (Contributed by Mario Carneiro, 21-Jun-2015) (Revised by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypothesis reloggim.1 P=mulGrpfld𝑠+
Assertion reloggim log+PGrpIsofld

Proof

Step Hyp Ref Expression
1 reloggim.1 P=mulGrpfld𝑠+
2 dfrelog log+=exp-1
3 1 reefgim expfldGrpIsoP
4 gimcnv expfldGrpIsoPexp-1PGrpIsofld
5 3 4 ax-mp exp-1PGrpIsofld
6 2 5 eqeltri log+PGrpIsofld