Metamath Proof Explorer


Theorem reefgim

Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015) (Revised by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypothesis reefgim.1 P=mulGrpfld𝑠+
Assertion reefgim expfldGrpIsoP

Proof

Step Hyp Ref Expression
1 reefgim.1 P=mulGrpfld𝑠+
2 rebase =Basefld
3 eqid mulGrpfld𝑠0=mulGrpfld𝑠0
4 3 rpmsubg +SubGrpmulGrpfld𝑠0
5 cnex V
6 5 difexi 0V
7 rpcndif0 x+x0
8 7 ssriv +0
9 ressabs 0V+0mulGrpfld𝑠0𝑠+=mulGrpfld𝑠+
10 6 8 9 mp2an mulGrpfld𝑠0𝑠+=mulGrpfld𝑠+
11 1 10 eqtr4i P=mulGrpfld𝑠0𝑠+
12 11 subgbas +SubGrpmulGrpfld𝑠0+=BaseP
13 4 12 ax-mp +=BaseP
14 replusg +=+fld
15 eqid mulGrpfld=mulGrpfld
16 cnfldmul ×=fld
17 15 16 mgpplusg ×=+mulGrpfld
18 1 17 ressplusg +SubGrpmulGrpfld𝑠0×=+P
19 4 18 ax-mp ×=+P
20 resubdrg SubRingfldfldDivRing
21 20 simpli SubRingfld
22 df-refld fld=fld𝑠
23 22 subrgring SubRingfldfldRing
24 21 23 ax-mp fldRing
25 ringgrp fldRingfldGrp
26 24 25 mp1i fldGrp
27 11 subggrp +SubGrpmulGrpfld𝑠0PGrp
28 4 27 mp1i PGrp
29 reeff1o exp:1-1 onto+
30 f1of exp:1-1 onto+exp:+
31 29 30 mp1i exp:+
32 recn xx
33 recn yy
34 efadd xyex+y=exey
35 32 33 34 syl2an xyex+y=exey
36 readdcl xyx+y
37 36 fvresd xyexpx+y=ex+y
38 fvres xexpx=ex
39 fvres yexpy=ey
40 38 39 oveqan12d xyexpxexpy=exey
41 35 37 40 3eqtr4d xyexpx+y=expxexpy
42 41 adantl xyexpx+y=expxexpy
43 2 13 14 19 26 28 31 42 isghmd expfldGrpHomP
44 43 mptru expfldGrpHomP
45 2 13 isgim expfldGrpIsoPexpfldGrpHomPexp:1-1 onto+
46 44 29 45 mpbir2an expfldGrpIsoP