Metamath Proof Explorer


Theorem reefgim

Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015) (Revised by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypothesis reefgim.1 P = mulGrp fld 𝑠 +
Assertion reefgim exp fld GrpIso P

Proof

Step Hyp Ref Expression
1 reefgim.1 P = mulGrp fld 𝑠 +
2 rebase = Base fld
3 eqid mulGrp fld 𝑠 0 = mulGrp fld 𝑠 0
4 3 rpmsubg + SubGrp mulGrp fld 𝑠 0
5 cnex V
6 5 difexi 0 V
7 rpcndif0 x + x 0
8 7 ssriv + 0
9 ressabs 0 V + 0 mulGrp fld 𝑠 0 𝑠 + = mulGrp fld 𝑠 +
10 6 8 9 mp2an mulGrp fld 𝑠 0 𝑠 + = mulGrp fld 𝑠 +
11 1 10 eqtr4i P = mulGrp fld 𝑠 0 𝑠 +
12 11 subgbas + SubGrp mulGrp fld 𝑠 0 + = Base P
13 4 12 ax-mp + = Base P
14 replusg + = + fld
15 eqid mulGrp fld = mulGrp fld
16 cnfldmul × = fld
17 15 16 mgpplusg × = + mulGrp fld
18 1 17 ressplusg + SubGrp mulGrp fld 𝑠 0 × = + P
19 4 18 ax-mp × = + P
20 resubdrg SubRing fld fld DivRing
21 20 simpli SubRing fld
22 df-refld fld = fld 𝑠
23 22 subrgring SubRing fld fld Ring
24 21 23 ax-mp fld Ring
25 ringgrp fld Ring fld Grp
26 24 25 mp1i fld Grp
27 11 subggrp + SubGrp mulGrp fld 𝑠 0 P Grp
28 4 27 mp1i P Grp
29 reeff1o exp : 1-1 onto +
30 f1of exp : 1-1 onto + exp : +
31 29 30 mp1i exp : +
32 recn x x
33 recn y y
34 efadd x y e x + y = e x e y
35 32 33 34 syl2an x y e x + y = e x e y
36 readdcl x y x + y
37 36 fvresd x y exp x + y = e x + y
38 fvres x exp x = e x
39 fvres y exp y = e y
40 38 39 oveqan12d x y exp x exp y = e x e y
41 35 37 40 3eqtr4d x y exp x + y = exp x exp y
42 41 adantl x y exp x + y = exp x exp y
43 2 13 14 19 26 28 31 42 isghmd exp fld GrpHom P
44 43 mptru exp fld GrpHom P
45 2 13 isgim exp fld GrpIso P exp fld GrpHom P exp : 1-1 onto +
46 44 29 45 mpbir2an exp fld GrpIso P