Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015) (Revised by Thierry Arnoux, 30-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reefgim.1 | |
|
Assertion | reefgim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reefgim.1 | |
|
2 | rebase | |
|
3 | eqid | |
|
4 | 3 | rpmsubg | |
5 | cnex | |
|
6 | 5 | difexi | |
7 | rpcndif0 | |
|
8 | 7 | ssriv | |
9 | ressabs | |
|
10 | 6 8 9 | mp2an | |
11 | 1 10 | eqtr4i | |
12 | 11 | subgbas | |
13 | 4 12 | ax-mp | |
14 | replusg | |
|
15 | eqid | |
|
16 | cnfldmul | |
|
17 | 15 16 | mgpplusg | |
18 | 1 17 | ressplusg | |
19 | 4 18 | ax-mp | |
20 | resubdrg | |
|
21 | 20 | simpli | |
22 | df-refld | |
|
23 | 22 | subrgring | |
24 | 21 23 | ax-mp | |
25 | ringgrp | |
|
26 | 24 25 | mp1i | |
27 | 11 | subggrp | |
28 | 4 27 | mp1i | |
29 | reeff1o | |
|
30 | f1of | |
|
31 | 29 30 | mp1i | |
32 | recn | |
|
33 | recn | |
|
34 | efadd | |
|
35 | 32 33 34 | syl2an | |
36 | readdcl | |
|
37 | 36 | fvresd | |
38 | fvres | |
|
39 | fvres | |
|
40 | 38 39 | oveqan12d | |
41 | 35 37 40 | 3eqtr4d | |
42 | 41 | adantl | |
43 | 2 13 14 19 26 28 31 42 | isghmd | |
44 | 43 | mptru | |
45 | 2 13 | isgim | |
46 | 44 29 45 | mpbir2an | |