Metamath Proof Explorer


Theorem reefgim

Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015) (Revised by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypothesis reefgim.1 𝑃 = ( ( mulGrp ‘ ℂfld ) ↾s+ )
Assertion reefgim ( exp ↾ ℝ ) ∈ ( ℝfld GrpIso 𝑃 )

Proof

Step Hyp Ref Expression
1 reefgim.1 𝑃 = ( ( mulGrp ‘ ℂfld ) ↾s+ )
2 rebase ℝ = ( Base ‘ ℝfld )
3 eqid ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) )
4 3 rpmsubg + ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) )
5 cnex ℂ ∈ V
6 5 difexi ( ℂ ∖ { 0 } ) ∈ V
7 rpcndif0 ( 𝑥 ∈ ℝ+𝑥 ∈ ( ℂ ∖ { 0 } ) )
8 7 ssriv + ⊆ ( ℂ ∖ { 0 } )
9 ressabs ( ( ( ℂ ∖ { 0 } ) ∈ V ∧ ℝ+ ⊆ ( ℂ ∖ { 0 } ) ) → ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s+ ) = ( ( mulGrp ‘ ℂfld ) ↾s+ ) )
10 6 8 9 mp2an ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s+ ) = ( ( mulGrp ‘ ℂfld ) ↾s+ )
11 1 10 eqtr4i 𝑃 = ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s+ )
12 11 subgbas ( ℝ+ ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) → ℝ+ = ( Base ‘ 𝑃 ) )
13 4 12 ax-mp + = ( Base ‘ 𝑃 )
14 replusg + = ( +g ‘ ℝfld )
15 eqid ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld )
16 cnfldmul · = ( .r ‘ ℂfld )
17 15 16 mgpplusg · = ( +g ‘ ( mulGrp ‘ ℂfld ) )
18 1 17 ressplusg ( ℝ+ ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) → · = ( +g𝑃 ) )
19 4 18 ax-mp · = ( +g𝑃 )
20 resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )
21 20 simpli ℝ ∈ ( SubRing ‘ ℂfld )
22 df-refld fld = ( ℂflds ℝ )
23 22 subrgring ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝfld ∈ Ring )
24 21 23 ax-mp fld ∈ Ring
25 ringgrp ( ℝfld ∈ Ring → ℝfld ∈ Grp )
26 24 25 mp1i ( ⊤ → ℝfld ∈ Grp )
27 11 subggrp ( ℝ+ ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) → 𝑃 ∈ Grp )
28 4 27 mp1i ( ⊤ → 𝑃 ∈ Grp )
29 reeff1o ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+
30 f1of ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ → ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ )
31 29 30 mp1i ( ⊤ → ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ )
32 recn ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ )
33 recn ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ )
34 efadd ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( exp ‘ ( 𝑥 + 𝑦 ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ 𝑦 ) ) )
35 32 33 34 syl2an ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( exp ‘ ( 𝑥 + 𝑦 ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ 𝑦 ) ) )
36 readdcl ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ )
37 36 fvresd ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( exp ↾ ℝ ) ‘ ( 𝑥 + 𝑦 ) ) = ( exp ‘ ( 𝑥 + 𝑦 ) ) )
38 fvres ( 𝑥 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) )
39 fvres ( 𝑦 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑦 ) = ( exp ‘ 𝑦 ) )
40 38 39 oveqan12d ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) · ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ 𝑦 ) ) )
41 35 37 40 3eqtr4d ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( exp ↾ ℝ ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) · ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) )
42 41 adantl ( ( ⊤ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( ( exp ↾ ℝ ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) · ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) )
43 2 13 14 19 26 28 31 42 isghmd ( ⊤ → ( exp ↾ ℝ ) ∈ ( ℝfld GrpHom 𝑃 ) )
44 43 mptru ( exp ↾ ℝ ) ∈ ( ℝfld GrpHom 𝑃 )
45 2 13 isgim ( ( exp ↾ ℝ ) ∈ ( ℝfld GrpIso 𝑃 ) ↔ ( ( exp ↾ ℝ ) ∈ ( ℝfld GrpHom 𝑃 ) ∧ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ) )
46 44 29 45 mpbir2an ( exp ↾ ℝ ) ∈ ( ℝfld GrpIso 𝑃 )