| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reefgim.1 | ⊢ 𝑃  =  ( ( mulGrp ‘ ℂfld )  ↾s  ℝ+ ) | 
						
							| 2 |  | rebase | ⊢ ℝ  =  ( Base ‘ ℝfld ) | 
						
							| 3 |  | eqid | ⊢ ( ( mulGrp ‘ ℂfld )  ↾s  ( ℂ  ∖  { 0 } ) )  =  ( ( mulGrp ‘ ℂfld )  ↾s  ( ℂ  ∖  { 0 } ) ) | 
						
							| 4 | 3 | rpmsubg | ⊢ ℝ+  ∈  ( SubGrp ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ( ℂ  ∖  { 0 } ) ) ) | 
						
							| 5 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 6 | 5 | difexi | ⊢ ( ℂ  ∖  { 0 } )  ∈  V | 
						
							| 7 |  | rpcndif0 | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 8 | 7 | ssriv | ⊢ ℝ+  ⊆  ( ℂ  ∖  { 0 } ) | 
						
							| 9 |  | ressabs | ⊢ ( ( ( ℂ  ∖  { 0 } )  ∈  V  ∧  ℝ+  ⊆  ( ℂ  ∖  { 0 } ) )  →  ( ( ( mulGrp ‘ ℂfld )  ↾s  ( ℂ  ∖  { 0 } ) )  ↾s  ℝ+ )  =  ( ( mulGrp ‘ ℂfld )  ↾s  ℝ+ ) ) | 
						
							| 10 | 6 8 9 | mp2an | ⊢ ( ( ( mulGrp ‘ ℂfld )  ↾s  ( ℂ  ∖  { 0 } ) )  ↾s  ℝ+ )  =  ( ( mulGrp ‘ ℂfld )  ↾s  ℝ+ ) | 
						
							| 11 | 1 10 | eqtr4i | ⊢ 𝑃  =  ( ( ( mulGrp ‘ ℂfld )  ↾s  ( ℂ  ∖  { 0 } ) )  ↾s  ℝ+ ) | 
						
							| 12 | 11 | subgbas | ⊢ ( ℝ+  ∈  ( SubGrp ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ( ℂ  ∖  { 0 } ) ) )  →  ℝ+  =  ( Base ‘ 𝑃 ) ) | 
						
							| 13 | 4 12 | ax-mp | ⊢ ℝ+  =  ( Base ‘ 𝑃 ) | 
						
							| 14 |  | replusg | ⊢  +   =  ( +g ‘ ℝfld ) | 
						
							| 15 |  | eqid | ⊢ ( mulGrp ‘ ℂfld )  =  ( mulGrp ‘ ℂfld ) | 
						
							| 16 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 17 | 15 16 | mgpplusg | ⊢  ·   =  ( +g ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 18 | 1 17 | ressplusg | ⊢ ( ℝ+  ∈  ( SubGrp ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ( ℂ  ∖  { 0 } ) ) )  →   ·   =  ( +g ‘ 𝑃 ) ) | 
						
							| 19 | 4 18 | ax-mp | ⊢  ·   =  ( +g ‘ 𝑃 ) | 
						
							| 20 |  | resubdrg | ⊢ ( ℝ  ∈  ( SubRing ‘ ℂfld )  ∧  ℝfld  ∈  DivRing ) | 
						
							| 21 | 20 | simpli | ⊢ ℝ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 22 |  | df-refld | ⊢ ℝfld  =  ( ℂfld  ↾s  ℝ ) | 
						
							| 23 | 22 | subrgring | ⊢ ( ℝ  ∈  ( SubRing ‘ ℂfld )  →  ℝfld  ∈  Ring ) | 
						
							| 24 | 21 23 | ax-mp | ⊢ ℝfld  ∈  Ring | 
						
							| 25 |  | ringgrp | ⊢ ( ℝfld  ∈  Ring  →  ℝfld  ∈  Grp ) | 
						
							| 26 | 24 25 | mp1i | ⊢ ( ⊤  →  ℝfld  ∈  Grp ) | 
						
							| 27 | 11 | subggrp | ⊢ ( ℝ+  ∈  ( SubGrp ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ( ℂ  ∖  { 0 } ) ) )  →  𝑃  ∈  Grp ) | 
						
							| 28 | 4 27 | mp1i | ⊢ ( ⊤  →  𝑃  ∈  Grp ) | 
						
							| 29 |  | reeff1o | ⊢ ( exp  ↾  ℝ ) : ℝ –1-1-onto→ ℝ+ | 
						
							| 30 |  | f1of | ⊢ ( ( exp  ↾  ℝ ) : ℝ –1-1-onto→ ℝ+  →  ( exp  ↾  ℝ ) : ℝ ⟶ ℝ+ ) | 
						
							| 31 | 29 30 | mp1i | ⊢ ( ⊤  →  ( exp  ↾  ℝ ) : ℝ ⟶ ℝ+ ) | 
						
							| 32 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 33 |  | recn | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℂ ) | 
						
							| 34 |  | efadd | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( exp ‘ ( 𝑥  +  𝑦 ) )  =  ( ( exp ‘ 𝑥 )  ·  ( exp ‘ 𝑦 ) ) ) | 
						
							| 35 | 32 33 34 | syl2an | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( exp ‘ ( 𝑥  +  𝑦 ) )  =  ( ( exp ‘ 𝑥 )  ·  ( exp ‘ 𝑦 ) ) ) | 
						
							| 36 |  | readdcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  +  𝑦 )  ∈  ℝ ) | 
						
							| 37 | 36 | fvresd | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( exp  ↾  ℝ ) ‘ ( 𝑥  +  𝑦 ) )  =  ( exp ‘ ( 𝑥  +  𝑦 ) ) ) | 
						
							| 38 |  | fvres | ⊢ ( 𝑥  ∈  ℝ  →  ( ( exp  ↾  ℝ ) ‘ 𝑥 )  =  ( exp ‘ 𝑥 ) ) | 
						
							| 39 |  | fvres | ⊢ ( 𝑦  ∈  ℝ  →  ( ( exp  ↾  ℝ ) ‘ 𝑦 )  =  ( exp ‘ 𝑦 ) ) | 
						
							| 40 | 38 39 | oveqan12d | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( ( exp  ↾  ℝ ) ‘ 𝑥 )  ·  ( ( exp  ↾  ℝ ) ‘ 𝑦 ) )  =  ( ( exp ‘ 𝑥 )  ·  ( exp ‘ 𝑦 ) ) ) | 
						
							| 41 | 35 37 40 | 3eqtr4d | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( exp  ↾  ℝ ) ‘ ( 𝑥  +  𝑦 ) )  =  ( ( ( exp  ↾  ℝ ) ‘ 𝑥 )  ·  ( ( exp  ↾  ℝ ) ‘ 𝑦 ) ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ ) )  →  ( ( exp  ↾  ℝ ) ‘ ( 𝑥  +  𝑦 ) )  =  ( ( ( exp  ↾  ℝ ) ‘ 𝑥 )  ·  ( ( exp  ↾  ℝ ) ‘ 𝑦 ) ) ) | 
						
							| 43 | 2 13 14 19 26 28 31 42 | isghmd | ⊢ ( ⊤  →  ( exp  ↾  ℝ )  ∈  ( ℝfld  GrpHom  𝑃 ) ) | 
						
							| 44 | 43 | mptru | ⊢ ( exp  ↾  ℝ )  ∈  ( ℝfld  GrpHom  𝑃 ) | 
						
							| 45 | 2 13 | isgim | ⊢ ( ( exp  ↾  ℝ )  ∈  ( ℝfld  GrpIso  𝑃 )  ↔  ( ( exp  ↾  ℝ )  ∈  ( ℝfld  GrpHom  𝑃 )  ∧  ( exp  ↾  ℝ ) : ℝ –1-1-onto→ ℝ+ ) ) | 
						
							| 46 | 44 29 45 | mpbir2an | ⊢ ( exp  ↾  ℝ )  ∈  ( ℝfld  GrpIso  𝑃 ) |