| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reefgim.1 |  |-  P = ( ( mulGrp ` CCfld ) |`s RR+ ) | 
						
							| 2 |  | rebase |  |-  RR = ( Base ` RRfld ) | 
						
							| 3 |  | eqid |  |-  ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) | 
						
							| 4 | 3 | rpmsubg |  |-  RR+ e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) | 
						
							| 5 |  | cnex |  |-  CC e. _V | 
						
							| 6 | 5 | difexi |  |-  ( CC \ { 0 } ) e. _V | 
						
							| 7 |  | rpcndif0 |  |-  ( x e. RR+ -> x e. ( CC \ { 0 } ) ) | 
						
							| 8 | 7 | ssriv |  |-  RR+ C_ ( CC \ { 0 } ) | 
						
							| 9 |  | ressabs |  |-  ( ( ( CC \ { 0 } ) e. _V /\ RR+ C_ ( CC \ { 0 } ) ) -> ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s RR+ ) = ( ( mulGrp ` CCfld ) |`s RR+ ) ) | 
						
							| 10 | 6 8 9 | mp2an |  |-  ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s RR+ ) = ( ( mulGrp ` CCfld ) |`s RR+ ) | 
						
							| 11 | 1 10 | eqtr4i |  |-  P = ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s RR+ ) | 
						
							| 12 | 11 | subgbas |  |-  ( RR+ e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) -> RR+ = ( Base ` P ) ) | 
						
							| 13 | 4 12 | ax-mp |  |-  RR+ = ( Base ` P ) | 
						
							| 14 |  | replusg |  |-  + = ( +g ` RRfld ) | 
						
							| 15 |  | eqid |  |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) | 
						
							| 16 |  | cnfldmul |  |-  x. = ( .r ` CCfld ) | 
						
							| 17 | 15 16 | mgpplusg |  |-  x. = ( +g ` ( mulGrp ` CCfld ) ) | 
						
							| 18 | 1 17 | ressplusg |  |-  ( RR+ e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) -> x. = ( +g ` P ) ) | 
						
							| 19 | 4 18 | ax-mp |  |-  x. = ( +g ` P ) | 
						
							| 20 |  | resubdrg |  |-  ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) | 
						
							| 21 | 20 | simpli |  |-  RR e. ( SubRing ` CCfld ) | 
						
							| 22 |  | df-refld |  |-  RRfld = ( CCfld |`s RR ) | 
						
							| 23 | 22 | subrgring |  |-  ( RR e. ( SubRing ` CCfld ) -> RRfld e. Ring ) | 
						
							| 24 | 21 23 | ax-mp |  |-  RRfld e. Ring | 
						
							| 25 |  | ringgrp |  |-  ( RRfld e. Ring -> RRfld e. Grp ) | 
						
							| 26 | 24 25 | mp1i |  |-  ( T. -> RRfld e. Grp ) | 
						
							| 27 | 11 | subggrp |  |-  ( RR+ e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) -> P e. Grp ) | 
						
							| 28 | 4 27 | mp1i |  |-  ( T. -> P e. Grp ) | 
						
							| 29 |  | reeff1o |  |-  ( exp |` RR ) : RR -1-1-onto-> RR+ | 
						
							| 30 |  | f1of |  |-  ( ( exp |` RR ) : RR -1-1-onto-> RR+ -> ( exp |` RR ) : RR --> RR+ ) | 
						
							| 31 | 29 30 | mp1i |  |-  ( T. -> ( exp |` RR ) : RR --> RR+ ) | 
						
							| 32 |  | recn |  |-  ( x e. RR -> x e. CC ) | 
						
							| 33 |  | recn |  |-  ( y e. RR -> y e. CC ) | 
						
							| 34 |  | efadd |  |-  ( ( x e. CC /\ y e. CC ) -> ( exp ` ( x + y ) ) = ( ( exp ` x ) x. ( exp ` y ) ) ) | 
						
							| 35 | 32 33 34 | syl2an |  |-  ( ( x e. RR /\ y e. RR ) -> ( exp ` ( x + y ) ) = ( ( exp ` x ) x. ( exp ` y ) ) ) | 
						
							| 36 |  | readdcl |  |-  ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) | 
						
							| 37 | 36 | fvresd |  |-  ( ( x e. RR /\ y e. RR ) -> ( ( exp |` RR ) ` ( x + y ) ) = ( exp ` ( x + y ) ) ) | 
						
							| 38 |  | fvres |  |-  ( x e. RR -> ( ( exp |` RR ) ` x ) = ( exp ` x ) ) | 
						
							| 39 |  | fvres |  |-  ( y e. RR -> ( ( exp |` RR ) ` y ) = ( exp ` y ) ) | 
						
							| 40 | 38 39 | oveqan12d |  |-  ( ( x e. RR /\ y e. RR ) -> ( ( ( exp |` RR ) ` x ) x. ( ( exp |` RR ) ` y ) ) = ( ( exp ` x ) x. ( exp ` y ) ) ) | 
						
							| 41 | 35 37 40 | 3eqtr4d |  |-  ( ( x e. RR /\ y e. RR ) -> ( ( exp |` RR ) ` ( x + y ) ) = ( ( ( exp |` RR ) ` x ) x. ( ( exp |` RR ) ` y ) ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( T. /\ ( x e. RR /\ y e. RR ) ) -> ( ( exp |` RR ) ` ( x + y ) ) = ( ( ( exp |` RR ) ` x ) x. ( ( exp |` RR ) ` y ) ) ) | 
						
							| 43 | 2 13 14 19 26 28 31 42 | isghmd |  |-  ( T. -> ( exp |` RR ) e. ( RRfld GrpHom P ) ) | 
						
							| 44 | 43 | mptru |  |-  ( exp |` RR ) e. ( RRfld GrpHom P ) | 
						
							| 45 | 2 13 | isgim |  |-  ( ( exp |` RR ) e. ( RRfld GrpIso P ) <-> ( ( exp |` RR ) e. ( RRfld GrpHom P ) /\ ( exp |` RR ) : RR -1-1-onto-> RR+ ) ) | 
						
							| 46 | 44 29 45 | mpbir2an |  |-  ( exp |` RR ) e. ( RRfld GrpIso P ) |