Metamath Proof Explorer


Theorem rpcndif0

Description: A positive real number is a complex number not being 0. (Contributed by AV, 29-May-2020)

Ref Expression
Assertion rpcndif0 ( 𝐴 ∈ ℝ+𝐴 ∈ ( ℂ ∖ { 0 } ) )

Proof

Step Hyp Ref Expression
1 rpcnne0 ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) )
2 eldifsn ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) )
3 1 2 sylibr ( 𝐴 ∈ ℝ+𝐴 ∈ ( ℂ ∖ { 0 } ) )