Description: The natural logarithm is a group isomorphism from the group of positive reals under multiplication to the group of reals under addition. (Contributed by Mario Carneiro, 21-Jun-2015) (Revised by Thierry Arnoux, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reloggim.1 | ⊢ 𝑃 = ( ( mulGrp ‘ ℂfld ) ↾s ℝ+ ) | |
| Assertion | reloggim | ⊢ ( log ↾ ℝ+ ) ∈ ( 𝑃 GrpIso ℝfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reloggim.1 | ⊢ 𝑃 = ( ( mulGrp ‘ ℂfld ) ↾s ℝ+ ) | |
| 2 | dfrelog | ⊢ ( log ↾ ℝ+ ) = ◡ ( exp ↾ ℝ ) | |
| 3 | 1 | reefgim | ⊢ ( exp ↾ ℝ ) ∈ ( ℝfld GrpIso 𝑃 ) |
| 4 | gimcnv | ⊢ ( ( exp ↾ ℝ ) ∈ ( ℝfld GrpIso 𝑃 ) → ◡ ( exp ↾ ℝ ) ∈ ( 𝑃 GrpIso ℝfld ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ◡ ( exp ↾ ℝ ) ∈ ( 𝑃 GrpIso ℝfld ) |
| 6 | 2 5 | eqeltri | ⊢ ( log ↾ ℝ+ ) ∈ ( 𝑃 GrpIso ℝfld ) |