Metamath Proof Explorer


Theorem reloggim

Description: The natural logarithm is a group isomorphism from the group of positive reals under multiplication to the group of reals under addition. (Contributed by Mario Carneiro, 21-Jun-2015) (Revised by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypothesis reloggim.1 𝑃 = ( ( mulGrp ‘ ℂfld ) ↾s+ )
Assertion reloggim ( log ↾ ℝ+ ) ∈ ( 𝑃 GrpIso ℝfld )

Proof

Step Hyp Ref Expression
1 reloggim.1 𝑃 = ( ( mulGrp ‘ ℂfld ) ↾s+ )
2 dfrelog ( log ↾ ℝ+ ) = ( exp ↾ ℝ )
3 1 reefgim ( exp ↾ ℝ ) ∈ ( ℝfld GrpIso 𝑃 )
4 gimcnv ( ( exp ↾ ℝ ) ∈ ( ℝfld GrpIso 𝑃 ) → ( exp ↾ ℝ ) ∈ ( 𝑃 GrpIso ℝfld ) )
5 3 4 ax-mp ( exp ↾ ℝ ) ∈ ( 𝑃 GrpIso ℝfld )
6 2 5 eqeltri ( log ↾ ℝ+ ) ∈ ( 𝑃 GrpIso ℝfld )