| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ima |
⊢ ( ( exp ↾ ran log ) “ ℝ ) = ran ( ( exp ↾ ran log ) ↾ ℝ ) |
| 2 |
|
relogrn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ran log ) |
| 3 |
2
|
ssriv |
⊢ ℝ ⊆ ran log |
| 4 |
|
resabs1 |
⊢ ( ℝ ⊆ ran log → ( ( exp ↾ ran log ) ↾ ℝ ) = ( exp ↾ ℝ ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( ( exp ↾ ran log ) ↾ ℝ ) = ( exp ↾ ℝ ) |
| 6 |
5
|
rneqi |
⊢ ran ( ( exp ↾ ran log ) ↾ ℝ ) = ran ( exp ↾ ℝ ) |
| 7 |
|
reeff1o |
⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ |
| 8 |
|
dff1o2 |
⊢ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ↔ ( ( exp ↾ ℝ ) Fn ℝ ∧ Fun ◡ ( exp ↾ ℝ ) ∧ ran ( exp ↾ ℝ ) = ℝ+ ) ) |
| 9 |
7 8
|
mpbi |
⊢ ( ( exp ↾ ℝ ) Fn ℝ ∧ Fun ◡ ( exp ↾ ℝ ) ∧ ran ( exp ↾ ℝ ) = ℝ+ ) |
| 10 |
9
|
simp3i |
⊢ ran ( exp ↾ ℝ ) = ℝ+ |
| 11 |
1 6 10
|
3eqtri |
⊢ ( ( exp ↾ ran log ) “ ℝ ) = ℝ+ |
| 12 |
11
|
reseq2i |
⊢ ( ◡ ( exp ↾ ran log ) ↾ ( ( exp ↾ ran log ) “ ℝ ) ) = ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) |
| 13 |
5
|
cnveqi |
⊢ ◡ ( ( exp ↾ ran log ) ↾ ℝ ) = ◡ ( exp ↾ ℝ ) |
| 14 |
|
logf1o |
⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |
| 15 |
|
f1ofun |
⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → Fun log ) |
| 16 |
14 15
|
ax-mp |
⊢ Fun log |
| 17 |
|
dflog2 |
⊢ log = ◡ ( exp ↾ ran log ) |
| 18 |
17
|
funeqi |
⊢ ( Fun log ↔ Fun ◡ ( exp ↾ ran log ) ) |
| 19 |
16 18
|
mpbi |
⊢ Fun ◡ ( exp ↾ ran log ) |
| 20 |
|
funcnvres |
⊢ ( Fun ◡ ( exp ↾ ran log ) → ◡ ( ( exp ↾ ran log ) ↾ ℝ ) = ( ◡ ( exp ↾ ran log ) ↾ ( ( exp ↾ ran log ) “ ℝ ) ) ) |
| 21 |
19 20
|
ax-mp |
⊢ ◡ ( ( exp ↾ ran log ) ↾ ℝ ) = ( ◡ ( exp ↾ ran log ) ↾ ( ( exp ↾ ran log ) “ ℝ ) ) |
| 22 |
13 21
|
eqtr3i |
⊢ ◡ ( exp ↾ ℝ ) = ( ◡ ( exp ↾ ran log ) ↾ ( ( exp ↾ ran log ) “ ℝ ) ) |
| 23 |
17
|
reseq1i |
⊢ ( log ↾ ℝ+ ) = ( ◡ ( exp ↾ ran log ) ↾ ℝ+ ) |
| 24 |
12 22 23
|
3eqtr4ri |
⊢ ( log ↾ ℝ+ ) = ◡ ( exp ↾ ℝ ) |