Metamath Proof Explorer


Theorem relogrn

Description: The range of the natural logarithm function includes the real numbers. (Contributed by Paul Chapman, 21-Apr-2008) (Proof shortened by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion relogrn ( 𝐴 ∈ ℝ → 𝐴 ∈ ran log )

Proof

Step Hyp Ref Expression
1 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
2 pipos 0 < π
3 pire π ∈ ℝ
4 lt0neg2 ( π ∈ ℝ → ( 0 < π ↔ - π < 0 ) )
5 3 4 ax-mp ( 0 < π ↔ - π < 0 )
6 2 5 mpbi - π < 0
7 reim0 ( 𝐴 ∈ ℝ → ( ℑ ‘ 𝐴 ) = 0 )
8 6 7 breqtrrid ( 𝐴 ∈ ℝ → - π < ( ℑ ‘ 𝐴 ) )
9 0re 0 ∈ ℝ
10 9 3 2 ltleii 0 ≤ π
11 7 10 eqbrtrdi ( 𝐴 ∈ ℝ → ( ℑ ‘ 𝐴 ) ≤ π )
12 ellogrn ( 𝐴 ∈ ran log ↔ ( 𝐴 ∈ ℂ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) )
13 1 8 11 12 syl3anbrc ( 𝐴 ∈ ℝ → 𝐴 ∈ ran log )