| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imf |
⊢ ℑ : ℂ ⟶ ℝ |
| 2 |
|
ffn |
⊢ ( ℑ : ℂ ⟶ ℝ → ℑ Fn ℂ ) |
| 3 |
|
elpreima |
⊢ ( ℑ Fn ℂ → ( 𝐴 ∈ ( ◡ ℑ “ ( - π (,] π ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ) ) ) |
| 4 |
1 2 3
|
mp2b |
⊢ ( 𝐴 ∈ ( ◡ ℑ “ ( - π (,] π ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ) ) |
| 5 |
|
pire |
⊢ π ∈ ℝ |
| 6 |
5
|
renegcli |
⊢ - π ∈ ℝ |
| 7 |
6
|
rexri |
⊢ - π ∈ ℝ* |
| 8 |
|
elioc2 |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
| 9 |
7 5 8
|
mp2an |
⊢ ( ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) |
| 10 |
|
3anass |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
| 11 |
9 10
|
bitri |
⊢ ( ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
| 12 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 13 |
12
|
biantrurd |
⊢ ( 𝐴 ∈ ℂ → ( ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ↔ ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) ) |
| 14 |
11 13
|
bitr4id |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ↔ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
| 15 |
14
|
pm5.32i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ( - π (,] π ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
| 16 |
4 15
|
bitri |
⊢ ( 𝐴 ∈ ( ◡ ℑ “ ( - π (,] π ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
| 17 |
|
logrn |
⊢ ran log = ( ◡ ℑ “ ( - π (,] π ) ) |
| 18 |
17
|
eleq2i |
⊢ ( 𝐴 ∈ ran log ↔ 𝐴 ∈ ( ◡ ℑ “ ( - π (,] π ) ) ) |
| 19 |
|
3anass |
⊢ ( ( 𝐴 ∈ ℂ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ↔ ( 𝐴 ∈ ℂ ∧ ( - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) ) |
| 20 |
16 18 19
|
3bitr4i |
⊢ ( 𝐴 ∈ ran log ↔ ( 𝐴 ∈ ℂ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) |