| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-log | 
							⊢ log  =  ◡ ( exp  ↾  ( ◡ ℑ  “  ( - π (,] π ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							rneqi | 
							⊢ ran  log  =  ran  ◡ ( exp  ↾  ( ◡ ℑ  “  ( - π (,] π ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( ◡ ℑ  “  ( - π (,] π ) )  =  ( ◡ ℑ  “  ( - π (,] π ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							eff1o | 
							⊢ ( exp  ↾  ( ◡ ℑ  “  ( - π (,] π ) ) ) : ( ◡ ℑ  “  ( - π (,] π ) ) –1-1-onto→ ( ℂ  ∖  { 0 } )  | 
						
						
							| 5 | 
							
								
							 | 
							f1ocnv | 
							⊢ ( ( exp  ↾  ( ◡ ℑ  “  ( - π (,] π ) ) ) : ( ◡ ℑ  “  ( - π (,] π ) ) –1-1-onto→ ( ℂ  ∖  { 0 } )  →  ◡ ( exp  ↾  ( ◡ ℑ  “  ( - π (,] π ) ) ) : ( ℂ  ∖  { 0 } ) –1-1-onto→ ( ◡ ℑ  “  ( - π (,] π ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							ax-mp | 
							⊢ ◡ ( exp  ↾  ( ◡ ℑ  “  ( - π (,] π ) ) ) : ( ℂ  ∖  { 0 } ) –1-1-onto→ ( ◡ ℑ  “  ( - π (,] π ) )  | 
						
						
							| 7 | 
							
								
							 | 
							f1ofo | 
							⊢ ( ◡ ( exp  ↾  ( ◡ ℑ  “  ( - π (,] π ) ) ) : ( ℂ  ∖  { 0 } ) –1-1-onto→ ( ◡ ℑ  “  ( - π (,] π ) )  →  ◡ ( exp  ↾  ( ◡ ℑ  “  ( - π (,] π ) ) ) : ( ℂ  ∖  { 0 } ) –onto→ ( ◡ ℑ  “  ( - π (,] π ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							forn | 
							⊢ ( ◡ ( exp  ↾  ( ◡ ℑ  “  ( - π (,] π ) ) ) : ( ℂ  ∖  { 0 } ) –onto→ ( ◡ ℑ  “  ( - π (,] π ) )  →  ran  ◡ ( exp  ↾  ( ◡ ℑ  “  ( - π (,] π ) ) )  =  ( ◡ ℑ  “  ( - π (,] π ) ) )  | 
						
						
							| 9 | 
							
								6 7 8
							 | 
							mp2b | 
							⊢ ran  ◡ ( exp  ↾  ( ◡ ℑ  “  ( - π (,] π ) ) )  =  ( ◡ ℑ  “  ( - π (,] π ) )  | 
						
						
							| 10 | 
							
								2 9
							 | 
							eqtri | 
							⊢ ran  log  =  ( ◡ ℑ  “  ( - π (,] π ) )  |