| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-log |
|- log = `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
| 2 |
1
|
rneqi |
|- ran log = ran `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) |
| 3 |
|
eqid |
|- ( `' Im " ( -u _pi (,] _pi ) ) = ( `' Im " ( -u _pi (,] _pi ) ) |
| 4 |
3
|
eff1o |
|- ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( `' Im " ( -u _pi (,] _pi ) ) -1-1-onto-> ( CC \ { 0 } ) |
| 5 |
|
f1ocnv |
|- ( ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( `' Im " ( -u _pi (,] _pi ) ) -1-1-onto-> ( CC \ { 0 } ) -> `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( CC \ { 0 } ) -1-1-onto-> ( `' Im " ( -u _pi (,] _pi ) ) ) |
| 6 |
4 5
|
ax-mp |
|- `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( CC \ { 0 } ) -1-1-onto-> ( `' Im " ( -u _pi (,] _pi ) ) |
| 7 |
|
f1ofo |
|- ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( CC \ { 0 } ) -1-1-onto-> ( `' Im " ( -u _pi (,] _pi ) ) -> `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( CC \ { 0 } ) -onto-> ( `' Im " ( -u _pi (,] _pi ) ) ) |
| 8 |
|
forn |
|- ( `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) : ( CC \ { 0 } ) -onto-> ( `' Im " ( -u _pi (,] _pi ) ) -> ran `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) = ( `' Im " ( -u _pi (,] _pi ) ) ) |
| 9 |
6 7 8
|
mp2b |
|- ran `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) ) = ( `' Im " ( -u _pi (,] _pi ) ) |
| 10 |
2 9
|
eqtri |
|- ran log = ( `' Im " ( -u _pi (,] _pi ) ) |