| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relogbval | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  ( 𝐵  logb  𝑋 )  =  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) ) ) | 
						
							| 2 | 1 | breq1d | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  ( ( 𝐵  logb  𝑋 )  <  1  ↔  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) )  <  1 ) ) | 
						
							| 3 |  | relogcl | ⊢ ( 𝑋  ∈  ℝ+  →  ( log ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  ( log ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 5 |  | 1red | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  1  ∈  ℝ ) | 
						
							| 6 |  | eluz2nn | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  𝐵  ∈  ℕ ) | 
						
							| 7 | 6 | nnrpd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  𝐵  ∈  ℝ+ ) | 
						
							| 8 |  | relogcl | ⊢ ( 𝐵  ∈  ℝ+  →  ( log ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  ( log ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 10 |  | eluz2gt1 | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  1  <  𝐵 ) | 
						
							| 11 |  | loggt0b | ⊢ ( 𝐵  ∈  ℝ+  →  ( 0  <  ( log ‘ 𝐵 )  ↔  1  <  𝐵 ) ) | 
						
							| 12 | 7 11 | syl | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  ( 0  <  ( log ‘ 𝐵 )  ↔  1  <  𝐵 ) ) | 
						
							| 13 | 10 12 | mpbird | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  0  <  ( log ‘ 𝐵 ) ) | 
						
							| 14 | 9 13 | jca | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  ( ( log ‘ 𝐵 )  ∈  ℝ  ∧  0  <  ( log ‘ 𝐵 ) ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  ( ( log ‘ 𝐵 )  ∈  ℝ  ∧  0  <  ( log ‘ 𝐵 ) ) ) | 
						
							| 16 |  | ltdivmul | ⊢ ( ( ( log ‘ 𝑋 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( ( log ‘ 𝐵 )  ∈  ℝ  ∧  0  <  ( log ‘ 𝐵 ) ) )  →  ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) )  <  1  ↔  ( log ‘ 𝑋 )  <  ( ( log ‘ 𝐵 )  ·  1 ) ) ) | 
						
							| 17 | 4 5 15 16 | syl3anc | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) )  <  1  ↔  ( log ‘ 𝑋 )  <  ( ( log ‘ 𝐵 )  ·  1 ) ) ) | 
						
							| 18 | 9 | recnd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  ( log ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 19 | 18 | mulridd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  ( ( log ‘ 𝐵 )  ·  1 )  =  ( log ‘ 𝐵 ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  ( ( log ‘ 𝐵 )  ·  1 )  =  ( log ‘ 𝐵 ) ) | 
						
							| 21 | 20 | breq2d | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  ( ( log ‘ 𝑋 )  <  ( ( log ‘ 𝐵 )  ·  1 )  ↔  ( log ‘ 𝑋 )  <  ( log ‘ 𝐵 ) ) ) | 
						
							| 22 | 7 | anim2i | ⊢ ( ( 𝑋  ∈  ℝ+  ∧  𝐵  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑋  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ ) ) | 
						
							| 23 | 22 | ancoms | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  ( 𝑋  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ ) ) | 
						
							| 24 |  | logltb | ⊢ ( ( 𝑋  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ )  →  ( 𝑋  <  𝐵  ↔  ( log ‘ 𝑋 )  <  ( log ‘ 𝐵 ) ) ) | 
						
							| 25 | 24 | bicomd | ⊢ ( ( 𝑋  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ )  →  ( ( log ‘ 𝑋 )  <  ( log ‘ 𝐵 )  ↔  𝑋  <  𝐵 ) ) | 
						
							| 26 | 23 25 | syl | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  ( ( log ‘ 𝑋 )  <  ( log ‘ 𝐵 )  ↔  𝑋  <  𝐵 ) ) | 
						
							| 27 | 21 26 | bitrd | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  ( ( log ‘ 𝑋 )  <  ( ( log ‘ 𝐵 )  ·  1 )  ↔  𝑋  <  𝐵 ) ) | 
						
							| 28 | 17 27 | bitrd | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) )  <  1  ↔  𝑋  <  𝐵 ) ) | 
						
							| 29 | 2 28 | bitrd | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  ( ( 𝐵  logb  𝑋 )  <  1  ↔  𝑋  <  𝐵 ) ) |