Metamath Proof Explorer


Theorem logblt1b

Description: The logarithm of a number is less than 1 iff the number is less than the base of the logarithm. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion logblt1b ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( 𝐵 logb 𝑋 ) < 1 ↔ 𝑋 < 𝐵 ) )

Proof

Step Hyp Ref Expression
1 relogbval ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) )
2 1 breq1d ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( 𝐵 logb 𝑋 ) < 1 ↔ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) < 1 ) )
3 relogcl ( 𝑋 ∈ ℝ+ → ( log ‘ 𝑋 ) ∈ ℝ )
4 3 adantl ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( log ‘ 𝑋 ) ∈ ℝ )
5 1red ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 1 ∈ ℝ )
6 eluz2nn ( 𝐵 ∈ ( ℤ ‘ 2 ) → 𝐵 ∈ ℕ )
7 6 nnrpd ( 𝐵 ∈ ( ℤ ‘ 2 ) → 𝐵 ∈ ℝ+ )
8 relogcl ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ )
9 7 8 syl ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( log ‘ 𝐵 ) ∈ ℝ )
10 eluz2gt1 ( 𝐵 ∈ ( ℤ ‘ 2 ) → 1 < 𝐵 )
11 loggt0b ( 𝐵 ∈ ℝ+ → ( 0 < ( log ‘ 𝐵 ) ↔ 1 < 𝐵 ) )
12 7 11 syl ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( 0 < ( log ‘ 𝐵 ) ↔ 1 < 𝐵 ) )
13 10 12 mpbird ( 𝐵 ∈ ( ℤ ‘ 2 ) → 0 < ( log ‘ 𝐵 ) )
14 9 13 jca ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( ( log ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( log ‘ 𝐵 ) ) )
15 14 adantr ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( log ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( log ‘ 𝐵 ) ) )
16 ltdivmul ( ( ( log ‘ 𝑋 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( log ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( log ‘ 𝐵 ) ) ) → ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) < 1 ↔ ( log ‘ 𝑋 ) < ( ( log ‘ 𝐵 ) · 1 ) ) )
17 4 5 15 16 syl3anc ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) < 1 ↔ ( log ‘ 𝑋 ) < ( ( log ‘ 𝐵 ) · 1 ) ) )
18 9 recnd ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( log ‘ 𝐵 ) ∈ ℂ )
19 18 mulid1d ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( ( log ‘ 𝐵 ) · 1 ) = ( log ‘ 𝐵 ) )
20 19 adantr ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( log ‘ 𝐵 ) · 1 ) = ( log ‘ 𝐵 ) )
21 20 breq2d ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( log ‘ 𝑋 ) < ( ( log ‘ 𝐵 ) · 1 ) ↔ ( log ‘ 𝑋 ) < ( log ‘ 𝐵 ) ) )
22 7 anim2i ( ( 𝑋 ∈ ℝ+𝐵 ∈ ( ℤ ‘ 2 ) ) → ( 𝑋 ∈ ℝ+𝐵 ∈ ℝ+ ) )
23 22 ancoms ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 ∈ ℝ+𝐵 ∈ ℝ+ ) )
24 logltb ( ( 𝑋 ∈ ℝ+𝐵 ∈ ℝ+ ) → ( 𝑋 < 𝐵 ↔ ( log ‘ 𝑋 ) < ( log ‘ 𝐵 ) ) )
25 24 bicomd ( ( 𝑋 ∈ ℝ+𝐵 ∈ ℝ+ ) → ( ( log ‘ 𝑋 ) < ( log ‘ 𝐵 ) ↔ 𝑋 < 𝐵 ) )
26 23 25 syl ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( log ‘ 𝑋 ) < ( log ‘ 𝐵 ) ↔ 𝑋 < 𝐵 ) )
27 21 26 bitrd ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( log ‘ 𝑋 ) < ( ( log ‘ 𝐵 ) · 1 ) ↔ 𝑋 < 𝐵 ) )
28 17 27 bitrd ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) < 1 ↔ 𝑋 < 𝐵 ) )
29 2 28 bitrd ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( 𝐵 logb 𝑋 ) < 1 ↔ 𝑋 < 𝐵 ) )