Step |
Hyp |
Ref |
Expression |
1 |
|
relogbval |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) |
2 |
1
|
breq1d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( 𝐵 logb 𝑋 ) < 1 ↔ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) < 1 ) ) |
3 |
|
relogcl |
⊢ ( 𝑋 ∈ ℝ+ → ( log ‘ 𝑋 ) ∈ ℝ ) |
4 |
3
|
adantl |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( log ‘ 𝑋 ) ∈ ℝ ) |
5 |
|
1red |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 1 ∈ ℝ ) |
6 |
|
eluz2nn |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ℕ ) |
7 |
6
|
nnrpd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ℝ+ ) |
8 |
|
relogcl |
⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) |
9 |
7 8
|
syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( log ‘ 𝐵 ) ∈ ℝ ) |
10 |
|
eluz2gt1 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝐵 ) |
11 |
|
loggt0b |
⊢ ( 𝐵 ∈ ℝ+ → ( 0 < ( log ‘ 𝐵 ) ↔ 1 < 𝐵 ) ) |
12 |
7 11
|
syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( 0 < ( log ‘ 𝐵 ) ↔ 1 < 𝐵 ) ) |
13 |
10 12
|
mpbird |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 0 < ( log ‘ 𝐵 ) ) |
14 |
9 13
|
jca |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( ( log ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( log ‘ 𝐵 ) ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( log ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( log ‘ 𝐵 ) ) ) |
16 |
|
ltdivmul |
⊢ ( ( ( log ‘ 𝑋 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( log ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( log ‘ 𝐵 ) ) ) → ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) < 1 ↔ ( log ‘ 𝑋 ) < ( ( log ‘ 𝐵 ) · 1 ) ) ) |
17 |
4 5 15 16
|
syl3anc |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) < 1 ↔ ( log ‘ 𝑋 ) < ( ( log ‘ 𝐵 ) · 1 ) ) ) |
18 |
9
|
recnd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
19 |
18
|
mulid1d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( ( log ‘ 𝐵 ) · 1 ) = ( log ‘ 𝐵 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( log ‘ 𝐵 ) · 1 ) = ( log ‘ 𝐵 ) ) |
21 |
20
|
breq2d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( log ‘ 𝑋 ) < ( ( log ‘ 𝐵 ) · 1 ) ↔ ( log ‘ 𝑋 ) < ( log ‘ 𝐵 ) ) ) |
22 |
7
|
anim2i |
⊢ ( ( 𝑋 ∈ ℝ+ ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑋 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ) |
23 |
22
|
ancoms |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ) |
24 |
|
logltb |
⊢ ( ( 𝑋 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝑋 < 𝐵 ↔ ( log ‘ 𝑋 ) < ( log ‘ 𝐵 ) ) ) |
25 |
24
|
bicomd |
⊢ ( ( 𝑋 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ( log ‘ 𝑋 ) < ( log ‘ 𝐵 ) ↔ 𝑋 < 𝐵 ) ) |
26 |
23 25
|
syl |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( log ‘ 𝑋 ) < ( log ‘ 𝐵 ) ↔ 𝑋 < 𝐵 ) ) |
27 |
21 26
|
bitrd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( log ‘ 𝑋 ) < ( ( log ‘ 𝐵 ) · 1 ) ↔ 𝑋 < 𝐵 ) ) |
28 |
17 27
|
bitrd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) < 1 ↔ 𝑋 < 𝐵 ) ) |
29 |
2 28
|
bitrd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( ( 𝐵 logb 𝑋 ) < 1 ↔ 𝑋 < 𝐵 ) ) |