Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
|- 0 e. RR |
2 |
|
lediv1 |
|- ( ( 0 e. RR /\ A e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( 0 <_ A <-> ( 0 / B ) <_ ( A / B ) ) ) |
3 |
1 2
|
mp3an1 |
|- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( 0 <_ A <-> ( 0 / B ) <_ ( A / B ) ) ) |
4 |
3
|
3impb |
|- ( ( A e. RR /\ B e. RR /\ 0 < B ) -> ( 0 <_ A <-> ( 0 / B ) <_ ( A / B ) ) ) |
5 |
|
recn |
|- ( B e. RR -> B e. CC ) |
6 |
|
gt0ne0 |
|- ( ( B e. RR /\ 0 < B ) -> B =/= 0 ) |
7 |
|
div0 |
|- ( ( B e. CC /\ B =/= 0 ) -> ( 0 / B ) = 0 ) |
8 |
5 6 7
|
syl2an2r |
|- ( ( B e. RR /\ 0 < B ) -> ( 0 / B ) = 0 ) |
9 |
8
|
breq1d |
|- ( ( B e. RR /\ 0 < B ) -> ( ( 0 / B ) <_ ( A / B ) <-> 0 <_ ( A / B ) ) ) |
10 |
9
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ 0 < B ) -> ( ( 0 / B ) <_ ( A / B ) <-> 0 <_ ( A / B ) ) ) |
11 |
4 10
|
bitrd |
|- ( ( A e. RR /\ B e. RR /\ 0 < B ) -> ( 0 <_ A <-> 0 <_ ( A / B ) ) ) |