Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
|- ( B e. ( RR+ \ { 1 } ) <-> ( B e. RR+ /\ B =/= 1 ) ) |
2 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
3 |
2
|
adantr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B e. CC ) |
4 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
5 |
4
|
adantr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 0 ) |
6 |
|
simpr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 1 ) |
7 |
3 5 6
|
3jca |
|- ( ( B e. RR+ /\ B =/= 1 ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
8 |
1 7
|
sylbi |
|- ( B e. ( RR+ \ { 1 } ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
9 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
10 |
8 9
|
sylibr |
|- ( B e. ( RR+ \ { 1 } ) -> B e. ( CC \ { 0 , 1 } ) ) |
11 |
10
|
adantr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> B e. ( CC \ { 0 , 1 } ) ) |
12 |
|
simpr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> A e. RR+ ) |
13 |
|
eldifi |
|- ( B e. ( RR+ \ { 1 } ) -> B e. RR+ ) |
14 |
13
|
adantr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> B e. RR+ ) |
15 |
|
relogbdiv |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ B e. RR+ ) ) -> ( B logb ( A / B ) ) = ( ( B logb A ) - ( B logb B ) ) ) |
16 |
11 12 14 15
|
syl12anc |
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( B logb ( A / B ) ) = ( ( B logb A ) - ( B logb B ) ) ) |
17 |
|
logbid1 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( B logb B ) = 1 ) |
18 |
8 17
|
syl |
|- ( B e. ( RR+ \ { 1 } ) -> ( B logb B ) = 1 ) |
19 |
18
|
adantr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( B logb B ) = 1 ) |
20 |
19
|
oveq2d |
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( ( B logb A ) - ( B logb B ) ) = ( ( B logb A ) - 1 ) ) |
21 |
16 20
|
eqtrd |
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( B logb ( A / B ) ) = ( ( B logb A ) - 1 ) ) |