| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifsn |
|- ( B e. ( RR+ \ { 1 } ) <-> ( B e. RR+ /\ B =/= 1 ) ) |
| 2 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
| 3 |
2
|
adantr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B e. CC ) |
| 4 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
| 5 |
4
|
adantr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 0 ) |
| 6 |
|
simpr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 1 ) |
| 7 |
3 5 6
|
3jca |
|- ( ( B e. RR+ /\ B =/= 1 ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
| 8 |
1 7
|
sylbi |
|- ( B e. ( RR+ \ { 1 } ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
| 9 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
| 10 |
8 9
|
sylibr |
|- ( B e. ( RR+ \ { 1 } ) -> B e. ( CC \ { 0 , 1 } ) ) |
| 11 |
10
|
adantr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> B e. ( CC \ { 0 , 1 } ) ) |
| 12 |
|
simpr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> A e. RR+ ) |
| 13 |
|
eldifi |
|- ( B e. ( RR+ \ { 1 } ) -> B e. RR+ ) |
| 14 |
13
|
adantr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> B e. RR+ ) |
| 15 |
|
relogbdiv |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ B e. RR+ ) ) -> ( B logb ( A / B ) ) = ( ( B logb A ) - ( B logb B ) ) ) |
| 16 |
11 12 14 15
|
syl12anc |
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( B logb ( A / B ) ) = ( ( B logb A ) - ( B logb B ) ) ) |
| 17 |
|
logbid1 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( B logb B ) = 1 ) |
| 18 |
8 17
|
syl |
|- ( B e. ( RR+ \ { 1 } ) -> ( B logb B ) = 1 ) |
| 19 |
18
|
adantr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( B logb B ) = 1 ) |
| 20 |
19
|
oveq2d |
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( ( B logb A ) - ( B logb B ) ) = ( ( B logb A ) - 1 ) ) |
| 21 |
16 20
|
eqtrd |
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( B logb ( A / B ) ) = ( ( B logb A ) - 1 ) ) |