| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifsn |  |-  ( B e. ( RR+ \ { 1 } ) <-> ( B e. RR+ /\ B =/= 1 ) ) | 
						
							| 2 |  | rpcn |  |-  ( B e. RR+ -> B e. CC ) | 
						
							| 3 | 2 | adantr |  |-  ( ( B e. RR+ /\ B =/= 1 ) -> B e. CC ) | 
						
							| 4 |  | rpne0 |  |-  ( B e. RR+ -> B =/= 0 ) | 
						
							| 5 | 4 | adantr |  |-  ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 0 ) | 
						
							| 6 |  | simpr |  |-  ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 1 ) | 
						
							| 7 | 3 5 6 | 3jca |  |-  ( ( B e. RR+ /\ B =/= 1 ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) | 
						
							| 8 | 1 7 | sylbi |  |-  ( B e. ( RR+ \ { 1 } ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) | 
						
							| 9 |  | eldifpr |  |-  ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) | 
						
							| 10 | 8 9 | sylibr |  |-  ( B e. ( RR+ \ { 1 } ) -> B e. ( CC \ { 0 , 1 } ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> B e. ( CC \ { 0 , 1 } ) ) | 
						
							| 12 |  | simpr |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> A e. RR+ ) | 
						
							| 13 |  | eldifi |  |-  ( B e. ( RR+ \ { 1 } ) -> B e. RR+ ) | 
						
							| 14 | 13 | adantr |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> B e. RR+ ) | 
						
							| 15 |  | relogbdiv |  |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ B e. RR+ ) ) -> ( B logb ( A / B ) ) = ( ( B logb A ) - ( B logb B ) ) ) | 
						
							| 16 | 11 12 14 15 | syl12anc |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( B logb ( A / B ) ) = ( ( B logb A ) - ( B logb B ) ) ) | 
						
							| 17 |  | logbid1 |  |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( B logb B ) = 1 ) | 
						
							| 18 | 8 17 | syl |  |-  ( B e. ( RR+ \ { 1 } ) -> ( B logb B ) = 1 ) | 
						
							| 19 | 18 | adantr |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( B logb B ) = 1 ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( ( B logb A ) - ( B logb B ) ) = ( ( B logb A ) - 1 ) ) | 
						
							| 21 | 16 20 | eqtrd |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( B logb ( A / B ) ) = ( ( B logb A ) - 1 ) ) |