Metamath Proof Explorer


Theorem relogbdivb

Description: The logarithm of the quotient of a positive real number and the base is the logarithm of the number minus 1. (Contributed by AV, 29-May-2020)

Ref Expression
Assertion relogbdivb
|- ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( B logb ( A / B ) ) = ( ( B logb A ) - 1 ) )

Proof

Step Hyp Ref Expression
1 eldifsn
 |-  ( B e. ( RR+ \ { 1 } ) <-> ( B e. RR+ /\ B =/= 1 ) )
2 rpcn
 |-  ( B e. RR+ -> B e. CC )
3 2 adantr
 |-  ( ( B e. RR+ /\ B =/= 1 ) -> B e. CC )
4 rpne0
 |-  ( B e. RR+ -> B =/= 0 )
5 4 adantr
 |-  ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 0 )
6 simpr
 |-  ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 1 )
7 3 5 6 3jca
 |-  ( ( B e. RR+ /\ B =/= 1 ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) )
8 1 7 sylbi
 |-  ( B e. ( RR+ \ { 1 } ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) )
9 eldifpr
 |-  ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) )
10 8 9 sylibr
 |-  ( B e. ( RR+ \ { 1 } ) -> B e. ( CC \ { 0 , 1 } ) )
11 10 adantr
 |-  ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> B e. ( CC \ { 0 , 1 } ) )
12 simpr
 |-  ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> A e. RR+ )
13 eldifi
 |-  ( B e. ( RR+ \ { 1 } ) -> B e. RR+ )
14 13 adantr
 |-  ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> B e. RR+ )
15 relogbdiv
 |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ B e. RR+ ) ) -> ( B logb ( A / B ) ) = ( ( B logb A ) - ( B logb B ) ) )
16 11 12 14 15 syl12anc
 |-  ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( B logb ( A / B ) ) = ( ( B logb A ) - ( B logb B ) ) )
17 logbid1
 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( B logb B ) = 1 )
18 8 17 syl
 |-  ( B e. ( RR+ \ { 1 } ) -> ( B logb B ) = 1 )
19 18 adantr
 |-  ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( B logb B ) = 1 )
20 19 oveq2d
 |-  ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( ( B logb A ) - ( B logb B ) ) = ( ( B logb A ) - 1 ) )
21 16 20 eqtrd
 |-  ( ( B e. ( RR+ \ { 1 } ) /\ A e. RR+ ) -> ( B logb ( A / B ) ) = ( ( B logb A ) - 1 ) )