| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logbval |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) |
| 2 |
1
|
oveq2d |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B ^c ( B logb X ) ) = ( B ^c ( ( log ` X ) / ( log ` B ) ) ) ) |
| 3 |
|
eldifi |
|- ( B e. ( CC \ { 0 , 1 } ) -> B e. CC ) |
| 4 |
3
|
adantr |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> B e. CC ) |
| 5 |
|
eldif |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ -. B e. { 0 , 1 } ) ) |
| 6 |
|
c0ex |
|- 0 e. _V |
| 7 |
6
|
prid1 |
|- 0 e. { 0 , 1 } |
| 8 |
|
eleq1 |
|- ( B = 0 -> ( B e. { 0 , 1 } <-> 0 e. { 0 , 1 } ) ) |
| 9 |
7 8
|
mpbiri |
|- ( B = 0 -> B e. { 0 , 1 } ) |
| 10 |
9
|
necon3bi |
|- ( -. B e. { 0 , 1 } -> B =/= 0 ) |
| 11 |
10
|
adantl |
|- ( ( B e. CC /\ -. B e. { 0 , 1 } ) -> B =/= 0 ) |
| 12 |
5 11
|
sylbi |
|- ( B e. ( CC \ { 0 , 1 } ) -> B =/= 0 ) |
| 13 |
12
|
adantr |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> B =/= 0 ) |
| 14 |
|
eldif |
|- ( X e. ( CC \ { 0 } ) <-> ( X e. CC /\ -. X e. { 0 } ) ) |
| 15 |
6
|
snid |
|- 0 e. { 0 } |
| 16 |
|
eleq1 |
|- ( X = 0 -> ( X e. { 0 } <-> 0 e. { 0 } ) ) |
| 17 |
15 16
|
mpbiri |
|- ( X = 0 -> X e. { 0 } ) |
| 18 |
17
|
necon3bi |
|- ( -. X e. { 0 } -> X =/= 0 ) |
| 19 |
18
|
anim2i |
|- ( ( X e. CC /\ -. X e. { 0 } ) -> ( X e. CC /\ X =/= 0 ) ) |
| 20 |
14 19
|
sylbi |
|- ( X e. ( CC \ { 0 } ) -> ( X e. CC /\ X =/= 0 ) ) |
| 21 |
|
logcl |
|- ( ( X e. CC /\ X =/= 0 ) -> ( log ` X ) e. CC ) |
| 22 |
20 21
|
syl |
|- ( X e. ( CC \ { 0 } ) -> ( log ` X ) e. CC ) |
| 23 |
22
|
adantl |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( log ` X ) e. CC ) |
| 24 |
10
|
anim2i |
|- ( ( B e. CC /\ -. B e. { 0 , 1 } ) -> ( B e. CC /\ B =/= 0 ) ) |
| 25 |
5 24
|
sylbi |
|- ( B e. ( CC \ { 0 , 1 } ) -> ( B e. CC /\ B =/= 0 ) ) |
| 26 |
|
logcl |
|- ( ( B e. CC /\ B =/= 0 ) -> ( log ` B ) e. CC ) |
| 27 |
25 26
|
syl |
|- ( B e. ( CC \ { 0 , 1 } ) -> ( log ` B ) e. CC ) |
| 28 |
27
|
adantr |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( log ` B ) e. CC ) |
| 29 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
| 30 |
29
|
biimpi |
|- ( B e. ( CC \ { 0 , 1 } ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
| 31 |
30
|
adantr |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
| 32 |
|
logccne0 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) |
| 33 |
31 32
|
syl |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( log ` B ) =/= 0 ) |
| 34 |
23 28 33
|
divcld |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( ( log ` X ) / ( log ` B ) ) e. CC ) |
| 35 |
4 13 34
|
cxpefd |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B ^c ( ( log ` X ) / ( log ` B ) ) ) = ( exp ` ( ( ( log ` X ) / ( log ` B ) ) x. ( log ` B ) ) ) ) |
| 36 |
|
eldifsn |
|- ( X e. ( CC \ { 0 } ) <-> ( X e. CC /\ X =/= 0 ) ) |
| 37 |
36 21
|
sylbi |
|- ( X e. ( CC \ { 0 } ) -> ( log ` X ) e. CC ) |
| 38 |
37
|
adantl |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( log ` X ) e. CC ) |
| 39 |
29 32
|
sylbi |
|- ( B e. ( CC \ { 0 , 1 } ) -> ( log ` B ) =/= 0 ) |
| 40 |
39
|
adantr |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( log ` B ) =/= 0 ) |
| 41 |
38 28 40
|
divcan1d |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( ( ( log ` X ) / ( log ` B ) ) x. ( log ` B ) ) = ( log ` X ) ) |
| 42 |
41
|
fveq2d |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( exp ` ( ( ( log ` X ) / ( log ` B ) ) x. ( log ` B ) ) ) = ( exp ` ( log ` X ) ) ) |
| 43 |
|
eflog |
|- ( ( X e. CC /\ X =/= 0 ) -> ( exp ` ( log ` X ) ) = X ) |
| 44 |
36 43
|
sylbi |
|- ( X e. ( CC \ { 0 } ) -> ( exp ` ( log ` X ) ) = X ) |
| 45 |
44
|
adantl |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( exp ` ( log ` X ) ) = X ) |
| 46 |
42 45
|
eqtrd |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( exp ` ( ( ( log ` X ) / ( log ` B ) ) x. ( log ` B ) ) ) = X ) |
| 47 |
2 35 46
|
3eqtrd |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B ^c ( B logb X ) ) = X ) |