| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logbval |
|
| 2 |
1
|
oveq2d |
|
| 3 |
|
eldifi |
|
| 4 |
3
|
adantr |
|
| 5 |
|
eldif |
|
| 6 |
|
c0ex |
|
| 7 |
6
|
prid1 |
|
| 8 |
|
eleq1 |
|
| 9 |
7 8
|
mpbiri |
|
| 10 |
9
|
necon3bi |
|
| 11 |
10
|
adantl |
|
| 12 |
5 11
|
sylbi |
|
| 13 |
12
|
adantr |
|
| 14 |
|
eldif |
|
| 15 |
6
|
snid |
|
| 16 |
|
eleq1 |
|
| 17 |
15 16
|
mpbiri |
|
| 18 |
17
|
necon3bi |
|
| 19 |
18
|
anim2i |
|
| 20 |
14 19
|
sylbi |
|
| 21 |
|
logcl |
|
| 22 |
20 21
|
syl |
|
| 23 |
22
|
adantl |
|
| 24 |
10
|
anim2i |
|
| 25 |
5 24
|
sylbi |
|
| 26 |
|
logcl |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
adantr |
|
| 29 |
|
eldifpr |
|
| 30 |
29
|
biimpi |
|
| 31 |
30
|
adantr |
|
| 32 |
|
logccne0 |
|
| 33 |
31 32
|
syl |
|
| 34 |
23 28 33
|
divcld |
|
| 35 |
4 13 34
|
cxpefd |
|
| 36 |
|
eldifsn |
|
| 37 |
36 21
|
sylbi |
|
| 38 |
37
|
adantl |
|
| 39 |
29 32
|
sylbi |
|
| 40 |
39
|
adantr |
|
| 41 |
38 28 40
|
divcan1d |
|
| 42 |
41
|
fveq2d |
|
| 43 |
|
eflog |
|
| 44 |
36 43
|
sylbi |
|
| 45 |
44
|
adantl |
|
| 46 |
42 45
|
eqtrd |
|
| 47 |
2 35 46
|
3eqtrd |
|