Metamath Proof Explorer


Theorem cxplogb

Description: Identity law for the general logarithm. (Contributed by AV, 22-May-2020)

Ref Expression
Assertion cxplogb B01X0BlogBX=X

Proof

Step Hyp Ref Expression
1 logbval B01X0logBX=logXlogB
2 1 oveq2d B01X0BlogBX=BlogXlogB
3 eldifi B01B
4 3 adantr B01X0B
5 eldif B01B¬B01
6 c0ex 0V
7 6 prid1 001
8 eleq1 B=0B01001
9 7 8 mpbiri B=0B01
10 9 necon3bi ¬B01B0
11 10 adantl B¬B01B0
12 5 11 sylbi B01B0
13 12 adantr B01X0B0
14 eldif X0X¬X0
15 6 snid 00
16 eleq1 X=0X000
17 15 16 mpbiri X=0X0
18 17 necon3bi ¬X0X0
19 18 anim2i X¬X0XX0
20 14 19 sylbi X0XX0
21 logcl XX0logX
22 20 21 syl X0logX
23 22 adantl B01X0logX
24 10 anim2i B¬B01BB0
25 5 24 sylbi B01BB0
26 logcl BB0logB
27 25 26 syl B01logB
28 27 adantr B01X0logB
29 eldifpr B01BB0B1
30 29 biimpi B01BB0B1
31 30 adantr B01X0BB0B1
32 logccne0 BB0B1logB0
33 31 32 syl B01X0logB0
34 23 28 33 divcld B01X0logXlogB
35 4 13 34 cxpefd B01X0BlogXlogB=elogXlogBlogB
36 eldifsn X0XX0
37 36 21 sylbi X0logX
38 37 adantl B01X0logX
39 29 32 sylbi B01logB0
40 39 adantr B01X0logB0
41 38 28 40 divcan1d B01X0logXlogBlogB=logX
42 41 fveq2d B01X0elogXlogBlogB=elogX
43 eflog XX0elogX=X
44 36 43 sylbi X0elogX=X
45 44 adantl B01X0elogX=X
46 42 45 eqtrd B01X0elogXlogBlogB=X
47 2 35 46 3eqtrd B01X0BlogBX=X