Metamath Proof Explorer


Theorem relogbcxpb

Description: The logarithm is the inverse of the exponentiation. Observation in Cohen4 p. 348. (Contributed by AV, 11-Jun-2020)

Ref Expression
Assertion relogbcxpb B+B1X+YlogBX=YBY=X

Proof

Step Hyp Ref Expression
1 oveq2 Y=logBXBY=BlogBX
2 1 eqcoms logBX=YBY=BlogBX
3 rpcn B+B
4 3 adantr B+B1B
5 rpne0 B+B0
6 5 adantr B+B1B0
7 simpr B+B1B1
8 eldifpr B01BB0B1
9 4 6 7 8 syl3anbrc B+B1B01
10 rpcndif0 X+X0
11 9 10 anim12i B+B1X+B01X0
12 11 3adant3 B+B1X+YB01X0
13 cxplogb B01X0BlogBX=X
14 12 13 syl B+B1X+YBlogBX=X
15 2 14 sylan9eqr B+B1X+YlogBX=YBY=X
16 oveq2 X=BYlogBX=logBBY
17 16 eqcoms BY=XlogBX=logBBY
18 eldifsn B+1B+B1
19 18 biimpri B+B1B+1
20 19 anim1i B+B1YB+1Y
21 20 3adant2 B+B1X+YB+1Y
22 relogbcxp B+1YlogBBY=Y
23 21 22 syl B+B1X+YlogBBY=Y
24 17 23 sylan9eqr B+B1X+YBY=XlogBX=Y
25 15 24 impbida B+B1X+YlogBX=YBY=X