Metamath Proof Explorer


Theorem logbmpt

Description: The general logarithm to a fixed base regarded as mapping. (Contributed by AV, 11-Jun-2020)

Ref Expression
Assertion logbmpt BB0B1currylogbB=y0logylogB

Proof

Step Hyp Ref Expression
1 df-logb logb=x01,y0logylogx
2 ovexd BB0B1x01y0logylogxV
3 2 ralrimivva BB0B1x01y0logylogxV
4 ax-1cn 1
5 ax-1ne0 10
6 elsng 1101=0
7 4 6 ax-mp 101=0
8 5 7 nemtbir ¬10
9 eldif 101¬10
10 4 8 9 mpbir2an 10
11 10 ne0ii 0
12 11 a1i BB0B10
13 cnex V
14 13 difexi 0V
15 14 a1i BB0B10V
16 eldifpr B01BB0B1
17 16 biimpri BB0B1B01
18 1 3 12 15 17 mpocurryvald BB0B1currylogbB=y0B/xlogylogx
19 csbov2g BB/xlogylogx=logyB/xlogx
20 csbfv B/xlogx=logB
21 20 a1i BB/xlogx=logB
22 21 oveq2d BlogyB/xlogx=logylogB
23 19 22 eqtrd BB/xlogylogx=logylogB
24 23 3ad2ant1 BB0B1B/xlogylogx=logylogB
25 24 mpteq2dv BB0B1y0B/xlogylogx=y0logylogB
26 18 25 eqtrd BB0B1currylogbB=y0logylogB