Metamath Proof Explorer


Theorem logbmpt

Description: The general logarithm to a fixed base regarded as mapping. (Contributed by AV, 11-Jun-2020)

Ref Expression
Assertion logbmpt B B 0 B 1 curry logb B = y 0 log y log B

Proof

Step Hyp Ref Expression
1 df-logb logb = x 0 1 , y 0 log y log x
2 ovexd B B 0 B 1 x 0 1 y 0 log y log x V
3 2 ralrimivva B B 0 B 1 x 0 1 y 0 log y log x V
4 ax-1cn 1
5 ax-1ne0 1 0
6 elsng 1 1 0 1 = 0
7 4 6 ax-mp 1 0 1 = 0
8 5 7 nemtbir ¬ 1 0
9 eldif 1 0 1 ¬ 1 0
10 4 8 9 mpbir2an 1 0
11 10 ne0ii 0
12 11 a1i B B 0 B 1 0
13 cnex V
14 13 difexi 0 V
15 14 a1i B B 0 B 1 0 V
16 eldifpr B 0 1 B B 0 B 1
17 16 biimpri B B 0 B 1 B 0 1
18 1 3 12 15 17 mpocurryvald B B 0 B 1 curry logb B = y 0 B / x log y log x
19 csbov2g B B / x log y log x = log y B / x log x
20 csbfv B / x log x = log B
21 20 a1i B B / x log x = log B
22 21 oveq2d B log y B / x log x = log y log B
23 19 22 eqtrd B B / x log y log x = log y log B
24 23 3ad2ant1 B B 0 B 1 B / x log y log x = log y log B
25 24 mpteq2dv B B 0 B 1 y 0 B / x log y log x = y 0 log y log B
26 18 25 eqtrd B B 0 B 1 curry logb B = y 0 log y log B