Metamath Proof Explorer


Theorem logbf

Description: The general logarithm to a fixed base regarded as function. (Contributed by AV, 11-Jun-2020)

Ref Expression
Assertion logbf BB0B1currylogbB:0

Proof

Step Hyp Ref Expression
1 logbmpt BB0B1currylogbB=y0logylogB
2 eldifsn y0yy0
3 logcl yy0logy
4 2 3 sylbi y0logy
5 4 adantl BB0B1y0logy
6 logcl BB0logB
7 6 3adant3 BB0B1logB
8 7 adantr BB0B1y0logB
9 logccne0 BB0B1logB0
10 9 adantr BB0B1y0logB0
11 5 8 10 divcld BB0B1y0logylogB
12 1 11 fmpt3d BB0B1currylogbB:0