Metamath Proof Explorer


Theorem logbfval

Description: The general logarithm of a complex number to a fixed base. (Contributed by AV, 11-Jun-2020)

Ref Expression
Assertion logbfval BB0B1X0currylogbBX=logBX

Proof

Step Hyp Ref Expression
1 df-logb logb=x01,y0logylogx
2 ovexd BB0B1X0x01y0logylogxV
3 2 ralrimivva BB0B1X0x01y0logylogxV
4 cnex V
5 difexg V0V
6 4 5 mp1i BB0B1X00V
7 eldifpr B01BB0B1
8 7 biimpri BB0B1B01
9 8 adantr BB0B1X0B01
10 simpr BB0B1X0X0
11 1 3 6 9 10 fvmpocurryd BB0B1X0currylogbBX=logBX