Step |
Hyp |
Ref |
Expression |
1 |
|
logbmpt |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( curry logb ‘ 𝐵 ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑦 ) / ( log ‘ 𝐵 ) ) ) ) |
2 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
3 |
|
logcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( log ‘ 𝑦 ) ∈ ℂ ) |
4 |
2 3
|
sylbi |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( log ‘ 𝑦 ) ∈ ℂ ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( log ‘ 𝑦 ) ∈ ℂ ) |
6 |
|
logcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
9 |
|
logccne0 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ≠ 0 ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( log ‘ 𝐵 ) ≠ 0 ) |
11 |
5 8 10
|
divcld |
⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( log ‘ 𝑦 ) / ( log ‘ 𝐵 ) ) ∈ ℂ ) |
12 |
1 11
|
fmpt3d |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( curry logb ‘ 𝐵 ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |