| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logbmpt |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( curry logb ` B ) = ( y e. ( CC \ { 0 } ) |-> ( ( log ` y ) / ( log ` B ) ) ) ) |
| 2 |
|
eldifsn |
|- ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) |
| 3 |
|
logcl |
|- ( ( y e. CC /\ y =/= 0 ) -> ( log ` y ) e. CC ) |
| 4 |
2 3
|
sylbi |
|- ( y e. ( CC \ { 0 } ) -> ( log ` y ) e. CC ) |
| 5 |
4
|
adantl |
|- ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ y e. ( CC \ { 0 } ) ) -> ( log ` y ) e. CC ) |
| 6 |
|
logcl |
|- ( ( B e. CC /\ B =/= 0 ) -> ( log ` B ) e. CC ) |
| 7 |
6
|
3adant3 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) e. CC ) |
| 8 |
7
|
adantr |
|- ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ y e. ( CC \ { 0 } ) ) -> ( log ` B ) e. CC ) |
| 9 |
|
logccne0 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) |
| 10 |
9
|
adantr |
|- ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ y e. ( CC \ { 0 } ) ) -> ( log ` B ) =/= 0 ) |
| 11 |
5 8 10
|
divcld |
|- ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ y e. ( CC \ { 0 } ) ) -> ( ( log ` y ) / ( log ` B ) ) e. CC ) |
| 12 |
1 11
|
fmpt3d |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( curry logb ` B ) : ( CC \ { 0 } ) --> CC ) |