| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑌 = ( 𝐵 logb 𝑋 ) → ( 𝐵 ↑𝑐 𝑌 ) = ( 𝐵 ↑𝑐 ( 𝐵 logb 𝑋 ) ) ) |
| 2 |
1
|
eqcoms |
⊢ ( ( 𝐵 logb 𝑋 ) = 𝑌 → ( 𝐵 ↑𝑐 𝑌 ) = ( 𝐵 ↑𝑐 ( 𝐵 logb 𝑋 ) ) ) |
| 3 |
|
rpcn |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ℂ ) |
| 5 |
|
rpne0 |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 0 ) |
| 7 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 1 ) |
| 8 |
|
eldifpr |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
| 9 |
4 6 7 8
|
syl3anbrc |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
| 10 |
|
rpcndif0 |
⊢ ( 𝑋 ∈ ℝ+ → 𝑋 ∈ ( ℂ ∖ { 0 } ) ) |
| 11 |
9 10
|
anim12i |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) ) |
| 12 |
11
|
3adant3 |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ ) → ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) ) |
| 13 |
|
cxplogb |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 ↑𝑐 ( 𝐵 logb 𝑋 ) ) = 𝑋 ) |
| 14 |
12 13
|
syl |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ ) → ( 𝐵 ↑𝑐 ( 𝐵 logb 𝑋 ) ) = 𝑋 ) |
| 15 |
2 14
|
sylan9eqr |
⊢ ( ( ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ ) ∧ ( 𝐵 logb 𝑋 ) = 𝑌 ) → ( 𝐵 ↑𝑐 𝑌 ) = 𝑋 ) |
| 16 |
|
oveq2 |
⊢ ( 𝑋 = ( 𝐵 ↑𝑐 𝑌 ) → ( 𝐵 logb 𝑋 ) = ( 𝐵 logb ( 𝐵 ↑𝑐 𝑌 ) ) ) |
| 17 |
16
|
eqcoms |
⊢ ( ( 𝐵 ↑𝑐 𝑌 ) = 𝑋 → ( 𝐵 logb 𝑋 ) = ( 𝐵 logb ( 𝐵 ↑𝑐 𝑌 ) ) ) |
| 18 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ↔ ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ) |
| 19 |
18
|
biimpri |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ) |
| 20 |
19
|
anim1i |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ∧ 𝑌 ∈ ℝ ) → ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑌 ∈ ℝ ) ) |
| 21 |
20
|
3adant2 |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ ) → ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑌 ∈ ℝ ) ) |
| 22 |
|
relogbcxp |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ 𝑌 ∈ ℝ ) → ( 𝐵 logb ( 𝐵 ↑𝑐 𝑌 ) ) = 𝑌 ) |
| 23 |
21 22
|
syl |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ ) → ( 𝐵 logb ( 𝐵 ↑𝑐 𝑌 ) ) = 𝑌 ) |
| 24 |
17 23
|
sylan9eqr |
⊢ ( ( ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ ) ∧ ( 𝐵 ↑𝑐 𝑌 ) = 𝑋 ) → ( 𝐵 logb 𝑋 ) = 𝑌 ) |
| 25 |
15 24
|
impbida |
⊢ ( ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ ) → ( ( 𝐵 logb 𝑋 ) = 𝑌 ↔ ( 𝐵 ↑𝑐 𝑌 ) = 𝑋 ) ) |