| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logbval | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝐵  logb  𝑋 )  =  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) ) ) | 
						
							| 2 | 1 | oveq2d | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝐵 ↑𝑐 ( 𝐵  logb  𝑋 ) )  =  ( 𝐵 ↑𝑐 ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) ) ) ) | 
						
							| 3 |  | eldifi | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  →  𝐵  ∈  ℂ ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | eldif | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ↔  ( 𝐵  ∈  ℂ  ∧  ¬  𝐵  ∈  { 0 ,  1 } ) ) | 
						
							| 6 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 7 | 6 | prid1 | ⊢ 0  ∈  { 0 ,  1 } | 
						
							| 8 |  | eleq1 | ⊢ ( 𝐵  =  0  →  ( 𝐵  ∈  { 0 ,  1 }  ↔  0  ∈  { 0 ,  1 } ) ) | 
						
							| 9 | 7 8 | mpbiri | ⊢ ( 𝐵  =  0  →  𝐵  ∈  { 0 ,  1 } ) | 
						
							| 10 | 9 | necon3bi | ⊢ ( ¬  𝐵  ∈  { 0 ,  1 }  →  𝐵  ≠  0 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  ¬  𝐵  ∈  { 0 ,  1 } )  →  𝐵  ≠  0 ) | 
						
							| 12 | 5 11 | sylbi | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  →  𝐵  ≠  0 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  𝐵  ≠  0 ) | 
						
							| 14 |  | eldif | ⊢ ( 𝑋  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 𝑋  ∈  ℂ  ∧  ¬  𝑋  ∈  { 0 } ) ) | 
						
							| 15 | 6 | snid | ⊢ 0  ∈  { 0 } | 
						
							| 16 |  | eleq1 | ⊢ ( 𝑋  =  0  →  ( 𝑋  ∈  { 0 }  ↔  0  ∈  { 0 } ) ) | 
						
							| 17 | 15 16 | mpbiri | ⊢ ( 𝑋  =  0  →  𝑋  ∈  { 0 } ) | 
						
							| 18 | 17 | necon3bi | ⊢ ( ¬  𝑋  ∈  { 0 }  →  𝑋  ≠  0 ) | 
						
							| 19 | 18 | anim2i | ⊢ ( ( 𝑋  ∈  ℂ  ∧  ¬  𝑋  ∈  { 0 } )  →  ( 𝑋  ∈  ℂ  ∧  𝑋  ≠  0 ) ) | 
						
							| 20 | 14 19 | sylbi | ⊢ ( 𝑋  ∈  ( ℂ  ∖  { 0 } )  →  ( 𝑋  ∈  ℂ  ∧  𝑋  ≠  0 ) ) | 
						
							| 21 |  | logcl | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑋  ≠  0 )  →  ( log ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝑋  ∈  ( ℂ  ∖  { 0 } )  →  ( log ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( log ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 24 | 10 | anim2i | ⊢ ( ( 𝐵  ∈  ℂ  ∧  ¬  𝐵  ∈  { 0 ,  1 } )  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) ) | 
						
							| 25 | 5 24 | sylbi | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) ) | 
						
							| 26 |  | logcl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( log ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  →  ( log ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( log ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 29 |  | eldifpr | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ↔  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 ) ) | 
						
							| 30 | 29 | biimpi | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 ) ) | 
						
							| 32 |  | logccne0 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  ( log ‘ 𝐵 )  ≠  0 ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( log ‘ 𝐵 )  ≠  0 ) | 
						
							| 34 | 23 28 33 | divcld | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 35 | 4 13 34 | cxpefd | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝐵 ↑𝑐 ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) ) )  =  ( exp ‘ ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) )  ·  ( log ‘ 𝐵 ) ) ) ) | 
						
							| 36 |  | eldifsn | ⊢ ( 𝑋  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 𝑋  ∈  ℂ  ∧  𝑋  ≠  0 ) ) | 
						
							| 37 | 36 21 | sylbi | ⊢ ( 𝑋  ∈  ( ℂ  ∖  { 0 } )  →  ( log ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( log ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 39 | 29 32 | sylbi | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  →  ( log ‘ 𝐵 )  ≠  0 ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( log ‘ 𝐵 )  ≠  0 ) | 
						
							| 41 | 38 28 40 | divcan1d | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) )  ·  ( log ‘ 𝐵 ) )  =  ( log ‘ 𝑋 ) ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( exp ‘ ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) )  ·  ( log ‘ 𝐵 ) ) )  =  ( exp ‘ ( log ‘ 𝑋 ) ) ) | 
						
							| 43 |  | eflog | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑋  ≠  0 )  →  ( exp ‘ ( log ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 44 | 36 43 | sylbi | ⊢ ( 𝑋  ∈  ( ℂ  ∖  { 0 } )  →  ( exp ‘ ( log ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( exp ‘ ( log ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 46 | 42 45 | eqtrd | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( exp ‘ ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) )  ·  ( log ‘ 𝐵 ) ) )  =  𝑋 ) | 
						
							| 47 | 2 35 46 | 3eqtrd | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝐵 ↑𝑐 ( 𝐵  logb  𝑋 ) )  =  𝑋 ) |