Metamath Proof Explorer


Theorem eflog

Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion eflog AA0elogA=A

Proof

Step Hyp Ref Expression
1 dflog2 log=expranlog-1
2 1 fveq1i logA=expranlog-1A
3 2 fveq2i expranloglogA=expranlogexpranlog-1A
4 logrncl AA0logAranlog
5 4 fvresd AA0expranloglogA=elogA
6 eldifsn A0AA0
7 eff1o2 expranlog:ranlog1-1 onto0
8 f1ocnvfv2 expranlog:ranlog1-1 onto0A0expranlogexpranlog-1A=A
9 7 8 mpan A0expranlogexpranlog-1A=A
10 6 9 sylbir AA0expranlogexpranlog-1A=A
11 3 5 10 3eqtr3a AA0elogA=A