Metamath Proof Explorer


Theorem dflog2

Description: The natural logarithm function in terms of the exponential function restricted to its principal domain. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion dflog2 log=expranlog-1

Proof

Step Hyp Ref Expression
1 df-log log=exp-1ππ-1
2 logrn ranlog=-1ππ
3 2 reseq2i expranlog=exp-1ππ
4 3 cnveqi expranlog-1=exp-1ππ-1
5 1 4 eqtr4i log=expranlog-1