Metamath Proof Explorer


Theorem cxpefd

Description: Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1
|- ( ph -> A e. CC )
cxpefd.2
|- ( ph -> A =/= 0 )
cxpefd.3
|- ( ph -> B e. CC )
Assertion cxpefd
|- ( ph -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) )

Proof

Step Hyp Ref Expression
1 cxp0d.1
 |-  ( ph -> A e. CC )
2 cxpefd.2
 |-  ( ph -> A =/= 0 )
3 cxpefd.3
 |-  ( ph -> B e. CC )
4 cxpef
 |-  ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) )