| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fllogbd.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 2 |  | fllogbd.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ+ ) | 
						
							| 3 |  | fllogbd.e | ⊢ 𝐸  =  ( ⌊ ‘ ( 𝐵  logb  𝑋 ) ) | 
						
							| 4 |  | relogbzcl | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ℝ+ )  →  ( 𝐵  logb  𝑋 )  ∈  ℝ ) | 
						
							| 5 | 1 2 4 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  logb  𝑋 )  ∈  ℝ ) | 
						
							| 6 |  | flle | ⊢ ( ( 𝐵  logb  𝑋 )  ∈  ℝ  →  ( ⌊ ‘ ( 𝐵  logb  𝑋 ) )  ≤  ( 𝐵  logb  𝑋 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝐵  logb  𝑋 ) )  ≤  ( 𝐵  logb  𝑋 ) ) | 
						
							| 8 | 3 7 | eqbrtrid | ⊢ ( 𝜑  →  𝐸  ≤  ( 𝐵  logb  𝑋 ) ) | 
						
							| 9 |  | eluzelz | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  𝐵  ∈  ℤ ) | 
						
							| 10 | 1 9 | syl | ⊢ ( 𝜑  →  𝐵  ∈  ℤ ) | 
						
							| 11 | 10 | zred | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 12 |  | eluz2b1 | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝐵  ∈  ℤ  ∧  1  <  𝐵 ) ) | 
						
							| 13 | 12 | simprbi | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  1  <  𝐵 ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝜑  →  1  <  𝐵 ) | 
						
							| 15 | 5 | flcld | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝐵  logb  𝑋 ) )  ∈  ℤ ) | 
						
							| 16 | 3 15 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  ℤ ) | 
						
							| 17 | 16 | zred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 18 | 11 14 17 5 | cxpled | ⊢ ( 𝜑  →  ( 𝐸  ≤  ( 𝐵  logb  𝑋 )  ↔  ( 𝐵 ↑𝑐 𝐸 )  ≤  ( 𝐵 ↑𝑐 ( 𝐵  logb  𝑋 ) ) ) ) | 
						
							| 19 | 8 18 | mpbid | ⊢ ( 𝜑  →  ( 𝐵 ↑𝑐 𝐸 )  ≤  ( 𝐵 ↑𝑐 ( 𝐵  logb  𝑋 ) ) ) | 
						
							| 20 | 10 | zcnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 21 |  | eluz2nn | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  𝐵  ∈  ℕ ) | 
						
							| 22 | 1 21 | syl | ⊢ ( 𝜑  →  𝐵  ∈  ℕ ) | 
						
							| 23 | 22 | nnne0d | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 24 | 20 23 16 | cxpexpzd | ⊢ ( 𝜑  →  ( 𝐵 ↑𝑐 𝐸 )  =  ( 𝐵 ↑ 𝐸 ) ) | 
						
							| 25 |  | eluz2cnn0n1 | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } ) ) | 
						
							| 26 | 1 25 | syl | ⊢ ( 𝜑  →  𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } ) ) | 
						
							| 27 |  | rpcnne0 | ⊢ ( 𝑋  ∈  ℝ+  →  ( 𝑋  ∈  ℂ  ∧  𝑋  ≠  0 ) ) | 
						
							| 28 |  | eldifsn | ⊢ ( 𝑋  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 𝑋  ∈  ℂ  ∧  𝑋  ≠  0 ) ) | 
						
							| 29 | 27 28 | sylibr | ⊢ ( 𝑋  ∈  ℝ+  →  𝑋  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 30 | 2 29 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 31 |  | cxplogb | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝐵 ↑𝑐 ( 𝐵  logb  𝑋 ) )  =  𝑋 ) | 
						
							| 32 | 26 30 31 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵 ↑𝑐 ( 𝐵  logb  𝑋 ) )  =  𝑋 ) | 
						
							| 33 | 19 24 32 | 3brtr3d | ⊢ ( 𝜑  →  ( 𝐵 ↑ 𝐸 )  ≤  𝑋 ) | 
						
							| 34 |  | flltp1 | ⊢ ( ( 𝐵  logb  𝑋 )  ∈  ℝ  →  ( 𝐵  logb  𝑋 )  <  ( ( ⌊ ‘ ( 𝐵  logb  𝑋 ) )  +  1 ) ) | 
						
							| 35 | 5 34 | syl | ⊢ ( 𝜑  →  ( 𝐵  logb  𝑋 )  <  ( ( ⌊ ‘ ( 𝐵  logb  𝑋 ) )  +  1 ) ) | 
						
							| 36 | 3 | a1i | ⊢ ( 𝜑  →  𝐸  =  ( ⌊ ‘ ( 𝐵  logb  𝑋 ) ) ) | 
						
							| 37 | 36 | oveq1d | ⊢ ( 𝜑  →  ( 𝐸  +  1 )  =  ( ( ⌊ ‘ ( 𝐵  logb  𝑋 ) )  +  1 ) ) | 
						
							| 38 | 35 37 | breqtrrd | ⊢ ( 𝜑  →  ( 𝐵  logb  𝑋 )  <  ( 𝐸  +  1 ) ) | 
						
							| 39 | 16 | peano2zd | ⊢ ( 𝜑  →  ( 𝐸  +  1 )  ∈  ℤ ) | 
						
							| 40 | 39 | zred | ⊢ ( 𝜑  →  ( 𝐸  +  1 )  ∈  ℝ ) | 
						
							| 41 | 11 14 5 40 | cxpltd | ⊢ ( 𝜑  →  ( ( 𝐵  logb  𝑋 )  <  ( 𝐸  +  1 )  ↔  ( 𝐵 ↑𝑐 ( 𝐵  logb  𝑋 ) )  <  ( 𝐵 ↑𝑐 ( 𝐸  +  1 ) ) ) ) | 
						
							| 42 | 38 41 | mpbid | ⊢ ( 𝜑  →  ( 𝐵 ↑𝑐 ( 𝐵  logb  𝑋 ) )  <  ( 𝐵 ↑𝑐 ( 𝐸  +  1 ) ) ) | 
						
							| 43 | 20 23 39 | cxpexpzd | ⊢ ( 𝜑  →  ( 𝐵 ↑𝑐 ( 𝐸  +  1 ) )  =  ( 𝐵 ↑ ( 𝐸  +  1 ) ) ) | 
						
							| 44 | 42 32 43 | 3brtr3d | ⊢ ( 𝜑  →  𝑋  <  ( 𝐵 ↑ ( 𝐸  +  1 ) ) ) | 
						
							| 45 | 33 44 | jca | ⊢ ( 𝜑  →  ( ( 𝐵 ↑ 𝐸 )  ≤  𝑋  ∧  𝑋  <  ( 𝐵 ↑ ( 𝐸  +  1 ) ) ) ) |