Description: An integer greater than 1 is a complex number not equal to 0 or 1. (Contributed by AV, 23-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | eluz2cnn0n1 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
2 | 1 | adantr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ℂ ) |
3 | nnne0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) | |
4 | 3 | adantr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 0 ) |
5 | simpr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 1 ) | |
6 | 2 4 5 | 3jca | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
7 | eluz2b3 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) ) | |
8 | eldifpr | ⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) | |
9 | 6 7 8 | 3imtr4i | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |