Metamath Proof Explorer


Theorem eluz2cnn0n1

Description: An integer greater than 1 is a complex number not equal to 0 or 1. (Contributed by AV, 23-May-2020)

Ref Expression
Assertion eluz2cnn0n1 ( 𝐵 ∈ ( ℤ ‘ 2 ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) )

Proof

Step Hyp Ref Expression
1 nncn ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ )
2 1 adantr ( ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ℂ )
3 nnne0 ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 )
4 3 adantr ( ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 0 )
5 simpr ( ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 1 )
6 2 4 5 3jca ( ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) )
7 eluz2b3 ( 𝐵 ∈ ( ℤ ‘ 2 ) ↔ ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) )
8 eldifpr ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) )
9 6 7 8 3imtr4i ( 𝐵 ∈ ( ℤ ‘ 2 ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) )