Description: An integer greater than 1 is a complex number not equal to 0 or 1. (Contributed by AV, 23-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluz2cnn0n1 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ℂ ) | 
| 3 | nnne0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 0 ) | 
| 5 | simpr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 1 ) | |
| 6 | 2 4 5 | 3jca | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) | 
| 7 | eluz2b3 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) ) | |
| 8 | eldifpr | ⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) | |
| 9 | 6 7 8 | 3imtr4i | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |