Metamath Proof Explorer


Theorem eluz2cnn0n1

Description: An integer greater than 1 is a complex number not equal to 0 or 1. (Contributed by AV, 23-May-2020)

Ref Expression
Assertion eluz2cnn0n1 B 2 B 0 1

Proof

Step Hyp Ref Expression
1 nncn B B
2 1 adantr B B 1 B
3 nnne0 B B 0
4 3 adantr B B 1 B 0
5 simpr B B 1 B 1
6 2 4 5 3jca B B 1 B B 0 B 1
7 eluz2b3 B 2 B B 1
8 eldifpr B 0 1 B B 0 B 1
9 6 7 8 3imtr4i B 2 B 0 1