| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nncn |  |-  ( B e. NN -> B e. CC ) | 
						
							| 2 | 1 | adantr |  |-  ( ( B e. NN /\ B =/= 1 ) -> B e. CC ) | 
						
							| 3 |  | nnne0 |  |-  ( B e. NN -> B =/= 0 ) | 
						
							| 4 | 3 | adantr |  |-  ( ( B e. NN /\ B =/= 1 ) -> B =/= 0 ) | 
						
							| 5 |  | simpr |  |-  ( ( B e. NN /\ B =/= 1 ) -> B =/= 1 ) | 
						
							| 6 | 2 4 5 | 3jca |  |-  ( ( B e. NN /\ B =/= 1 ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) | 
						
							| 7 |  | eluz2b3 |  |-  ( B e. ( ZZ>= ` 2 ) <-> ( B e. NN /\ B =/= 1 ) ) | 
						
							| 8 |  | eldifpr |  |-  ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) | 
						
							| 9 | 6 7 8 | 3imtr4i |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. ( CC \ { 0 , 1 } ) ) |