Step |
Hyp |
Ref |
Expression |
1 |
|
nncn |
|- ( B e. NN -> B e. CC ) |
2 |
1
|
adantr |
|- ( ( B e. NN /\ B =/= 1 ) -> B e. CC ) |
3 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
4 |
3
|
adantr |
|- ( ( B e. NN /\ B =/= 1 ) -> B =/= 0 ) |
5 |
|
simpr |
|- ( ( B e. NN /\ B =/= 1 ) -> B =/= 1 ) |
6 |
2 4 5
|
3jca |
|- ( ( B e. NN /\ B =/= 1 ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
7 |
|
eluz2b3 |
|- ( B e. ( ZZ>= ` 2 ) <-> ( B e. NN /\ B =/= 1 ) ) |
8 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
9 |
6 7 8
|
3imtr4i |
|- ( B e. ( ZZ>= ` 2 ) -> B e. ( CC \ { 0 , 1 } ) ) |