| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpcn |  |-  ( A e. RR+ -> A e. CC ) | 
						
							| 2 | 1 | mullidd |  |-  ( A e. RR+ -> ( 1 x. A ) = A ) | 
						
							| 3 | 2 | eqcomd |  |-  ( A e. RR+ -> A = ( 1 x. A ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( A e. RR+ /\ B e. RR ) -> A = ( 1 x. A ) ) | 
						
							| 5 | 4 | breq1d |  |-  ( ( A e. RR+ /\ B e. RR ) -> ( A <_ B <-> ( 1 x. A ) <_ B ) ) | 
						
							| 6 |  | 1red |  |-  ( ( A e. RR+ /\ B e. RR ) -> 1 e. RR ) | 
						
							| 7 |  | simpr |  |-  ( ( A e. RR+ /\ B e. RR ) -> B e. RR ) | 
						
							| 8 |  | rpregt0 |  |-  ( A e. RR+ -> ( A e. RR /\ 0 < A ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A e. RR+ /\ B e. RR ) -> ( A e. RR /\ 0 < A ) ) | 
						
							| 10 |  | lemuldiv |  |-  ( ( 1 e. RR /\ B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( 1 x. A ) <_ B <-> 1 <_ ( B / A ) ) ) | 
						
							| 11 | 6 7 9 10 | syl3anc |  |-  ( ( A e. RR+ /\ B e. RR ) -> ( ( 1 x. A ) <_ B <-> 1 <_ ( B / A ) ) ) | 
						
							| 12 | 5 11 | bitrd |  |-  ( ( A e. RR+ /\ B e. RR ) -> ( A <_ B <-> 1 <_ ( B / A ) ) ) |