Description: Closure of the general logarithm with integer base on positive reals. (Contributed by Thierry Arnoux, 27-Sep-2017) (Proof shortened by AV, 9-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relogbzcl | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 logb 𝑋 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zgt1rpn0n1 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) | |
| 2 | relogbcl | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( 𝐵 logb 𝑋 ) ∈ ℝ ) | |
| 3 | 2 | 3com23 | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 logb 𝑋 ) ∈ ℝ ) |
| 4 | 3 | 3expia | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( 𝑋 ∈ ℝ+ → ( 𝐵 logb 𝑋 ) ∈ ℝ ) ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( 𝑋 ∈ ℝ+ → ( 𝐵 logb 𝑋 ) ∈ ℝ ) ) |
| 6 | 1 5 | syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑋 ∈ ℝ+ → ( 𝐵 logb 𝑋 ) ∈ ℝ ) ) |
| 7 | 6 | imp | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 logb 𝑋 ) ∈ ℝ ) |