Description: Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 30-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cxp0d.1 | |- ( ph -> A e. CC ) |
|
| cxpefd.2 | |- ( ph -> A =/= 0 ) |
||
| cxpexpzd.3 | |- ( ph -> B e. ZZ ) |
||
| Assertion | cxpexpzd | |- ( ph -> ( A ^c B ) = ( A ^ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxp0d.1 | |- ( ph -> A e. CC ) |
|
| 2 | cxpefd.2 | |- ( ph -> A =/= 0 ) |
|
| 3 | cxpexpzd.3 | |- ( ph -> B e. ZZ ) |
|
| 4 | cxpexpz | |- ( ( A e. CC /\ A =/= 0 /\ B e. ZZ ) -> ( A ^c B ) = ( A ^ B ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A ^c B ) = ( A ^ B ) ) |