Description: Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 30-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cxp0d.1 | |- ( ph -> A e. CC ) |
|
cxpefd.2 | |- ( ph -> A =/= 0 ) |
||
cxpexpzd.3 | |- ( ph -> B e. ZZ ) |
||
Assertion | cxpexpzd | |- ( ph -> ( A ^c B ) = ( A ^ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cxp0d.1 | |- ( ph -> A e. CC ) |
|
2 | cxpefd.2 | |- ( ph -> A =/= 0 ) |
|
3 | cxpexpzd.3 | |- ( ph -> B e. ZZ ) |
|
4 | cxpexpz | |- ( ( A e. CC /\ A =/= 0 /\ B e. ZZ ) -> ( A ^c B ) = ( A ^ B ) ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A ^c B ) = ( A ^ B ) ) |