Metamath Proof Explorer


Theorem cxpexpzd

Description: Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses cxp0d.1 φA
cxpefd.2 φA0
cxpexpzd.3 φB
Assertion cxpexpzd φAB=AB

Proof

Step Hyp Ref Expression
1 cxp0d.1 φA
2 cxpefd.2 φA0
3 cxpexpzd.3 φB
4 cxpexpz AA0BAB=AB
5 1 2 3 4 syl3anc φAB=AB