Metamath Proof Explorer


Theorem rege1logbzge0

Description: The general logarithm, with an integer base greater than 1, for a real number greater than or equal to 1 is greater than or equal to 0. (Contributed by AV, 25-May-2020)

Ref Expression
Assertion rege1logbzge0 B 2 X 1 +∞ 0 log B X

Proof

Step Hyp Ref Expression
1 zre B B
2 1 3ad2ant2 2 B 2 B B
3 1lt2 1 < 2
4 1re 1
5 4 a1i 2 B 1
6 2re 2
7 6 a1i 2 B 2
8 1 adantl 2 B B
9 ltletr 1 2 B 1 < 2 2 B 1 < B
10 5 7 8 9 syl3anc 2 B 1 < 2 2 B 1 < B
11 3 10 mpani 2 B 2 B 1 < B
12 11 3impia 2 B 2 B 1 < B
13 2 12 jca 2 B 2 B B 1 < B
14 eluz2 B 2 2 B 2 B
15 1xr 1 *
16 elioopnf 1 * B 1 +∞ B 1 < B
17 15 16 ax-mp B 1 +∞ B 1 < B
18 13 14 17 3imtr4i B 2 B 1 +∞
19 rege1logbrege0 B 1 +∞ X 1 +∞ 0 log B X
20 18 19 sylan B 2 X 1 +∞ 0 log B X