Metamath Proof Explorer


Theorem rege1logbzge0

Description: The general logarithm, with an integer base greater than 1, for a real number greater than or equal to 1 is greater than or equal to 0. (Contributed by AV, 25-May-2020)

Ref Expression
Assertion rege1logbzge0 B2X1+∞0logBX

Proof

Step Hyp Ref Expression
1 zre BB
2 1 3ad2ant2 2B2BB
3 1lt2 1<2
4 1re 1
5 4 a1i 2B1
6 2re 2
7 6 a1i 2B2
8 1 adantl 2BB
9 ltletr 12B1<22B1<B
10 5 7 8 9 syl3anc 2B1<22B1<B
11 3 10 mpani 2B2B1<B
12 11 3impia 2B2B1<B
13 2 12 jca 2B2BB1<B
14 eluz2 B22B2B
15 1xr 1*
16 elioopnf 1*B1+∞B1<B
17 15 16 ax-mp B1+∞B1<B
18 13 14 17 3imtr4i B2B1+∞
19 rege1logbrege0 B1+∞X1+∞0logBX
20 18 19 sylan B2X1+∞0logBX