Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
|
2 |
|
elicopnf |
|
3 |
1 2
|
ax-mp |
|
4 |
|
id |
|
5 |
3 4
|
sylbi |
|
6 |
5
|
adantl |
|
7 |
|
logge0 |
|
8 |
6 7
|
syl |
|
9 |
|
simpl |
|
10 |
|
0lt1 |
|
11 |
|
0red |
|
12 |
|
1red |
|
13 |
|
id |
|
14 |
|
ltletr |
|
15 |
11 12 13 14
|
syl3anc |
|
16 |
10 15
|
mpani |
|
17 |
16
|
imp |
|
18 |
9 17
|
elrpd |
|
19 |
3 18
|
sylbi |
|
20 |
19
|
relogcld |
|
21 |
20
|
adantl |
|
22 |
|
1xr |
|
23 |
|
elioopnf |
|
24 |
22 23
|
ax-mp |
|
25 |
|
simpl |
|
26 |
|
0red |
|
27 |
|
1red |
|
28 |
|
id |
|
29 |
|
lttr |
|
30 |
26 27 28 29
|
syl3anc |
|
31 |
10 30
|
mpani |
|
32 |
31
|
imp |
|
33 |
25 32
|
elrpd |
|
34 |
24 33
|
sylbi |
|
35 |
34
|
relogcld |
|
36 |
35
|
adantr |
|
37 |
|
regt1loggt0 |
|
38 |
37
|
adantr |
|
39 |
|
ge0div |
|
40 |
21 36 38 39
|
syl3anc |
|
41 |
8 40
|
mpbid |
|
42 |
|
recn |
|
43 |
42
|
adantr |
|
44 |
32
|
gt0ne0d |
|
45 |
27 28
|
ltlend |
|
46 |
45
|
simplbda |
|
47 |
43 44 46
|
3jca |
|
48 |
|
eldifpr |
|
49 |
47 24 48
|
3imtr4i |
|
50 |
|
recn |
|
51 |
50
|
adantr |
|
52 |
17
|
gt0ne0d |
|
53 |
51 52
|
jca |
|
54 |
|
eldifsn |
|
55 |
53 3 54
|
3imtr4i |
|
56 |
|
logbval |
|
57 |
49 55 56
|
syl2an |
|
58 |
41 57
|
breqtrrd |
|