Metamath Proof Explorer


Theorem rege1logbrege0

Description: The general logarithm, with a real base greater than 1, for a real number greater than or equal to 1 is greater than or equal to 0. (Contributed by AV, 25-May-2020)

Ref Expression
Assertion rege1logbrege0 B 1 +∞ X 1 +∞ 0 log B X

Proof

Step Hyp Ref Expression
1 1re 1
2 elicopnf 1 X 1 +∞ X 1 X
3 1 2 ax-mp X 1 +∞ X 1 X
4 id X 1 X X 1 X
5 3 4 sylbi X 1 +∞ X 1 X
6 5 adantl B 1 +∞ X 1 +∞ X 1 X
7 logge0 X 1 X 0 log X
8 6 7 syl B 1 +∞ X 1 +∞ 0 log X
9 simpl X 1 X X
10 0lt1 0 < 1
11 0red X 0
12 1red X 1
13 id X X
14 ltletr 0 1 X 0 < 1 1 X 0 < X
15 11 12 13 14 syl3anc X 0 < 1 1 X 0 < X
16 10 15 mpani X 1 X 0 < X
17 16 imp X 1 X 0 < X
18 9 17 elrpd X 1 X X +
19 3 18 sylbi X 1 +∞ X +
20 19 relogcld X 1 +∞ log X
21 20 adantl B 1 +∞ X 1 +∞ log X
22 1xr 1 *
23 elioopnf 1 * B 1 +∞ B 1 < B
24 22 23 ax-mp B 1 +∞ B 1 < B
25 simpl B 1 < B B
26 0red B 0
27 1red B 1
28 id B B
29 lttr 0 1 B 0 < 1 1 < B 0 < B
30 26 27 28 29 syl3anc B 0 < 1 1 < B 0 < B
31 10 30 mpani B 1 < B 0 < B
32 31 imp B 1 < B 0 < B
33 25 32 elrpd B 1 < B B +
34 24 33 sylbi B 1 +∞ B +
35 34 relogcld B 1 +∞ log B
36 35 adantr B 1 +∞ X 1 +∞ log B
37 regt1loggt0 B 1 +∞ 0 < log B
38 37 adantr B 1 +∞ X 1 +∞ 0 < log B
39 ge0div log X log B 0 < log B 0 log X 0 log X log B
40 21 36 38 39 syl3anc B 1 +∞ X 1 +∞ 0 log X 0 log X log B
41 8 40 mpbid B 1 +∞ X 1 +∞ 0 log X log B
42 recn B B
43 42 adantr B 1 < B B
44 32 gt0ne0d B 1 < B B 0
45 27 28 ltlend B 1 < B 1 B B 1
46 45 simplbda B 1 < B B 1
47 43 44 46 3jca B 1 < B B B 0 B 1
48 eldifpr B 0 1 B B 0 B 1
49 47 24 48 3imtr4i B 1 +∞ B 0 1
50 recn X X
51 50 adantr X 1 X X
52 17 gt0ne0d X 1 X X 0
53 51 52 jca X 1 X X X 0
54 eldifsn X 0 X X 0
55 53 3 54 3imtr4i X 1 +∞ X 0
56 logbval B 0 1 X 0 log B X = log X log B
57 49 55 56 syl2an B 1 +∞ X 1 +∞ log B X = log X log B
58 41 57 breqtrrd B 1 +∞ X 1 +∞ 0 log B X