Metamath Proof Explorer


Theorem ltlend

Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φA
ltd.2 φB
Assertion ltlend φA<BABBA

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltd.2 φB
3 ltlen ABA<BABBA
4 1 2 3 syl2anc φA<BABBA