Metamath Proof Explorer


Theorem ltlend

Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
Assertion ltlend φ A < B A B B A

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 ltlen A B A < B A B B A
4 1 2 3 syl2anc φ A < B A B B A