| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1xr |  |-  1 e. RR* | 
						
							| 2 |  | elioopnf |  |-  ( 1 e. RR* -> ( B e. ( 1 (,) +oo ) <-> ( B e. RR /\ 1 < B ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( B e. ( 1 (,) +oo ) <-> ( B e. RR /\ 1 < B ) ) | 
						
							| 4 | 3 | simprbi |  |-  ( B e. ( 1 (,) +oo ) -> 1 < B ) | 
						
							| 5 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 6 | 5 | eqcomi |  |-  0 = ( log ` 1 ) | 
						
							| 7 | 6 | a1i |  |-  ( B e. ( 1 (,) +oo ) -> 0 = ( log ` 1 ) ) | 
						
							| 8 | 7 | breq1d |  |-  ( B e. ( 1 (,) +oo ) -> ( 0 < ( log ` B ) <-> ( log ` 1 ) < ( log ` B ) ) ) | 
						
							| 9 |  | 1rp |  |-  1 e. RR+ | 
						
							| 10 |  | 0lt1 |  |-  0 < 1 | 
						
							| 11 |  | 0red |  |-  ( B e. RR -> 0 e. RR ) | 
						
							| 12 |  | 1red |  |-  ( B e. RR -> 1 e. RR ) | 
						
							| 13 |  | id |  |-  ( B e. RR -> B e. RR ) | 
						
							| 14 |  | lttr |  |-  ( ( 0 e. RR /\ 1 e. RR /\ B e. RR ) -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) | 
						
							| 15 | 11 12 13 14 | syl3anc |  |-  ( B e. RR -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) | 
						
							| 16 | 10 15 | mpani |  |-  ( B e. RR -> ( 1 < B -> 0 < B ) ) | 
						
							| 17 | 16 | imdistani |  |-  ( ( B e. RR /\ 1 < B ) -> ( B e. RR /\ 0 < B ) ) | 
						
							| 18 |  | elrp |  |-  ( B e. RR+ <-> ( B e. RR /\ 0 < B ) ) | 
						
							| 19 | 17 3 18 | 3imtr4i |  |-  ( B e. ( 1 (,) +oo ) -> B e. RR+ ) | 
						
							| 20 |  | logltb |  |-  ( ( 1 e. RR+ /\ B e. RR+ ) -> ( 1 < B <-> ( log ` 1 ) < ( log ` B ) ) ) | 
						
							| 21 | 9 19 20 | sylancr |  |-  ( B e. ( 1 (,) +oo ) -> ( 1 < B <-> ( log ` 1 ) < ( log ` B ) ) ) | 
						
							| 22 | 8 21 | bitr4d |  |-  ( B e. ( 1 (,) +oo ) -> ( 0 < ( log ` B ) <-> 1 < B ) ) | 
						
							| 23 | 4 22 | mpbird |  |-  ( B e. ( 1 (,) +oo ) -> 0 < ( log ` B ) ) |