Metamath Proof Explorer


Theorem bnj1034

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1034.1
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )
bnj1034.2
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
bnj1034.3
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )
bnj1034.4
|- ( th <-> ( R _FrSe A /\ X e. A ) )
bnj1034.5
|- ( ta <-> ( B e. _V /\ _TrFo ( B , A , R ) /\ _pred ( X , A , R ) C_ B ) )
bnj1034.7
|- ( ze <-> ( i e. n /\ z e. ( f ` i ) ) )
bnj1034.8
|- D = ( _om \ { (/) } )
bnj1034.9
|- K = { f | E. n e. D ( f Fn n /\ ph /\ ps ) }
bnj1034.10
|- ( E. f E. n E. i ( th /\ ta /\ ch /\ ze ) -> z e. B )
Assertion bnj1034
|- ( ( th /\ ta ) -> _trCl ( X , A , R ) C_ B )

Proof

Step Hyp Ref Expression
1 bnj1034.1
 |-  ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )
2 bnj1034.2
 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
3 bnj1034.3
 |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )
4 bnj1034.4
 |-  ( th <-> ( R _FrSe A /\ X e. A ) )
5 bnj1034.5
 |-  ( ta <-> ( B e. _V /\ _TrFo ( B , A , R ) /\ _pred ( X , A , R ) C_ B ) )
6 bnj1034.7
 |-  ( ze <-> ( i e. n /\ z e. ( f ` i ) ) )
7 bnj1034.8
 |-  D = ( _om \ { (/) } )
8 bnj1034.9
 |-  K = { f | E. n e. D ( f Fn n /\ ph /\ ps ) }
9 bnj1034.10
 |-  ( E. f E. n E. i ( th /\ ta /\ ch /\ ze ) -> z e. B )
10 biid
 |-  ( z e. _trCl ( X , A , R ) <-> z e. _trCl ( X , A , R ) )
11 1 2 3 4 5 10 6 7 8 9 bnj1033
 |-  ( ( th /\ ta ) -> _trCl ( X , A , R ) C_ B )