Description: Existence of a minimal element in certain classes: if R is well-founded and set-like on A , then every nonempty subclass of A has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bnj69 | |- ( ( R _FrSe A /\ B C_ A /\ B =/= (/) ) -> E. x e. B A. y e. B -. y R x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid | |- ( ( R _FrSe A /\ B C_ A /\ B =/= (/) ) <-> ( R _FrSe A /\ B C_ A /\ B =/= (/) ) ) |
|
| 2 | biid | |- ( ( x e. B /\ y e. B /\ y R x ) <-> ( x e. B /\ y e. B /\ y R x ) ) |
|
| 3 | biid | |- ( A. y e. B -. y R x <-> A. y e. B -. y R x ) |
|
| 4 | 1 2 3 | bnj1189 | |- ( ( R _FrSe A /\ B C_ A /\ B =/= (/) ) -> E. x e. B A. y e. B -. y R x ) |