Metamath Proof Explorer
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
bnj1131.1 |
|- ( ph -> A. x ph ) |
|
|
bnj1131.2 |
|- E. x ph |
|
Assertion |
bnj1131 |
|- ph |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1131.1 |
|- ( ph -> A. x ph ) |
| 2 |
|
bnj1131.2 |
|- E. x ph |
| 3 |
1
|
19.9h |
|- ( E. x ph <-> ph ) |
| 4 |
2 3
|
mpbi |
|- ph |