Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj1138.1 | |- A = ( B u. C ) |
|
Assertion | bnj1138 | |- ( X e. A <-> ( X e. B \/ X e. C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1138.1 | |- A = ( B u. C ) |
|
2 | 1 | eleq2i | |- ( X e. A <-> X e. ( B u. C ) ) |
3 | elun | |- ( X e. ( B u. C ) <-> ( X e. B \/ X e. C ) ) |
|
4 | 2 3 | bitri | |- ( X e. A <-> ( X e. B \/ X e. C ) ) |