Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1138.1 | |- A = ( B u. C ) |
|
| Assertion | bnj1138 | |- ( X e. A <-> ( X e. B \/ X e. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1138.1 | |- A = ( B u. C ) |
|
| 2 | 1 | eleq2i | |- ( X e. A <-> X e. ( B u. C ) ) |
| 3 | elun | |- ( X e. ( B u. C ) <-> ( X e. B \/ X e. C ) ) |
|
| 4 | 2 3 | bitri | |- ( X e. A <-> ( X e. B \/ X e. C ) ) |