Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1138.1 | ⊢ 𝐴 = ( 𝐵 ∪ 𝐶 ) | |
| Assertion | bnj1138 | ⊢ ( 𝑋 ∈ 𝐴 ↔ ( 𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1138.1 | ⊢ 𝐴 = ( 𝐵 ∪ 𝐶 ) | |
| 2 | 1 | eleq2i | ⊢ ( 𝑋 ∈ 𝐴 ↔ 𝑋 ∈ ( 𝐵 ∪ 𝐶 ) ) |
| 3 | elun | ⊢ ( 𝑋 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( 𝑋 ∈ 𝐴 ↔ ( 𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶 ) ) |