Metamath Proof Explorer


Theorem bnj1212

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1212.1
|- B = { x e. A | ph }
bnj1212.2
|- ( th <-> ( ch /\ x e. B /\ ta ) )
Assertion bnj1212
|- ( th -> x e. A )

Proof

Step Hyp Ref Expression
1 bnj1212.1
 |-  B = { x e. A | ph }
2 bnj1212.2
 |-  ( th <-> ( ch /\ x e. B /\ ta ) )
3 1 ssrab3
 |-  B C_ A
4 2 simp2bi
 |-  ( th -> x e. B )
5 3 4 bnj1213
 |-  ( th -> x e. A )