Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj1212.1 | |- B = { x e. A | ph } |
|
| bnj1212.2 | |- ( th <-> ( ch /\ x e. B /\ ta ) ) |
||
| Assertion | bnj1212 | |- ( th -> x e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1212.1 | |- B = { x e. A | ph } |
|
| 2 | bnj1212.2 | |- ( th <-> ( ch /\ x e. B /\ ta ) ) |
|
| 3 | 1 | ssrab3 | |- B C_ A |
| 4 | 2 | simp2bi | |- ( th -> x e. B ) |
| 5 | 3 4 | bnj1213 | |- ( th -> x e. A ) |