Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1212.1 | |- B = { x e. A | ph } |
|
bnj1212.2 | |- ( th <-> ( ch /\ x e. B /\ ta ) ) |
||
Assertion | bnj1212 | |- ( th -> x e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1212.1 | |- B = { x e. A | ph } |
|
2 | bnj1212.2 | |- ( th <-> ( ch /\ x e. B /\ ta ) ) |
|
3 | 1 | ssrab3 | |- B C_ A |
4 | 2 | simp2bi | |- ( th -> x e. B ) |
5 | 3 4 | bnj1213 | |- ( th -> x e. A ) |