Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1230.1 | |- B = { x e. A | ph } |
|
| Assertion | bnj1230 | |- ( y e. B -> A. x y e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1230.1 | |- B = { x e. A | ph } |
|
| 2 | nfrab1 | |- F/_ x { x e. A | ph } |
|
| 3 | 1 2 | nfcxfr | |- F/_ x B |
| 4 | 3 | nfcrii | |- ( y e. B -> A. x y e. B ) |