Metamath Proof Explorer


Theorem bnj1265

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1265.1
|- ( ph -> E. x e. A ps )
Assertion bnj1265
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 bnj1265.1
 |-  ( ph -> E. x e. A ps )
2 1 bnj1196
 |-  ( ph -> E. x ( x e. A /\ ps ) )
3 2 bnj1266
 |-  ( ph -> E. x ps )
4 3 bnj937
 |-  ( ph -> ps )