Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj1275.1 | |- ( ph -> E. x ( ps /\ ch ) ) |
|
| bnj1275.2 | |- ( ph -> A. x ph ) |
||
| Assertion | bnj1275 | |- ( ph -> E. x ( ph /\ ps /\ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1275.1 | |- ( ph -> E. x ( ps /\ ch ) ) |
|
| 2 | bnj1275.2 | |- ( ph -> A. x ph ) |
|
| 3 | 2 1 | bnj596 | |- ( ph -> E. x ( ph /\ ( ps /\ ch ) ) ) |
| 4 | 3anass | |- ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) ) |
|
| 5 | 3 4 | bnj1198 | |- ( ph -> E. x ( ph /\ ps /\ ch ) ) |