Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj1275.1 | ⊢ ( 𝜑 → ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) | |
| bnj1275.2 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | ||
| Assertion | bnj1275 | ⊢ ( 𝜑 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1275.1 | ⊢ ( 𝜑 → ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) | |
| 2 | bnj1275.2 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 3 | 2 1 | bnj596 | ⊢ ( 𝜑 → ∃ 𝑥 ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
| 4 | 3anass | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 5 | 3 4 | bnj1198 | ⊢ ( 𝜑 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |