Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj1307.1 | |- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
|
| bnj1307.2 | |- ( w e. B -> A. x w e. B ) |
||
| Assertion | bnj1307 | |- ( w e. C -> A. x w e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1307.1 | |- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
|
| 2 | bnj1307.2 | |- ( w e. B -> A. x w e. B ) |
|
| 3 | 2 | nfcii | |- F/_ x B |
| 4 | nfv | |- F/ x f Fn d |
|
| 5 | nfra1 | |- F/ x A. x e. d ( f ` x ) = ( G ` Y ) |
|
| 6 | 4 5 | nfan | |- F/ x ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) |
| 7 | 3 6 | nfrexw | |- F/ x E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) |
| 8 | 7 | nfab | |- F/_ x { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 9 | 1 8 | nfcxfr | |- F/_ x C |
| 10 | 9 | nfcrii | |- ( w e. C -> A. x w e. C ) |